

Interface Guide

Version 12.0

Copyright © 1982-2008 by Dyalog Limited.

All rights reserved.

Version 12.0.3

First Edition August 2008

No part of this publication may be reproduced in any form by any means without the prior written permission of Dyalog Limited, South Barn, Minchens Court, Minchens Lane, Bramle, y Hampshire, RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Dyalog Limited reserves the right to revise this publication without notification.

TRADEMARKS:

Intel, 386 and 486 are registered trademarks of Intel Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Microsoft, MS and MS-DOS are registered trademarks of Microsoft Corporation.

POSTSCRIPT is a registered trademark of Adobe Systems, Inc.

SQAPL is copyright of Insight Systems ApS.

The Dyalog APL True Type font is the copyright of Adrian Smith.

TrueType is a registered trademark of Apple Computer, Inc.

UNIX is a trademark of X/Open Ltd.

Windows, Windows NT, Visual Basic and Excel are trademarks of Microsoft Corporation.

All other trademarks and copyrights are acknowledged.

Contents

CHAPTER 1 Introduction	<i>'</i>
Overview	1
Concepts	
Objects	
Implementation Overview	
Creating Objects	
Naming Objects	
Specifying Properties	
Saving Objects	
The Object Hierarchy	
Properties	
Setting Properties with Assignment.	
Retrieving property values by reference	
Setting Properties with DWC	
Changing Property Values with WS	
The Event Property	
User Interaction & Events.	
Giving Control to the User	18
The Event Queue	
Assignment and reference to the Event Property	20
Callback Functions	22
Generating Events using INQ	25
Calling Methods	
Invoking Methods with INQ	27
Events as Methods	28
GUI Objects as Namespaces	29
Attaching GUI Objects to Namespaces	32
Namespace References and GUI Objects	33
Modal Dialog Boxes	36
The MsgBox and FileBox Objects	37
Multi-Threading with Objects	38
The Co-ordinate System.	39
Colour	40
Fonts	41
Drag and Drop	42
Debugging	43
Creating Objects using TNEW	44

CHAPTER 2 GUI Tutorial	47
Introduction	47
Some Concepts.	
Objects	
Properties	
Events	
Callback Functions	
Creating a Form	
Adding a Fahrenheit Label	
Adding a Fahrenheit Edit Field	50
Adding a Centigrade Label & Edit Field	51
Adding Calculate Buttons	52
Closing the Application Window	
Adding a Quit Button	54
The Calculation Functions	55
Testing the Application	56
Making the Enter Key Work	57
Introducing a ScrollBar	58
Adding a Menu	60
Running from Desktop	63
Using NEW instead of WC	65
Temperature Converter Class	67
Dual Class Example	70
CHAPTER 3 Graphics	75
Introduction	
Drawing Lines	
Drawing in a Bitmap	
Multiple Graphical Items	
Unnamed Graphical Objects	
Bitmaps and Icons	
Metafiles	
Creating a Metafile Object	
Drawing a Metafile Object	
Picture Buttons	
Using the Picture Property	85
Using the BtnPix Property	
Using Icons	

CHAPTER 4 Composite Controls	89
The ToolControl and ToolButton Objects	
Standard Bitmap Resources.	
Dyalog Bitmap Resources	
Creating ImageLists for ToolButtons	
The Style Property	
The Divider Property	
The MultiLine Property	
The Transparent Property	
Radio buttons, Check buttons and Separators	
Drop-Down buttons	
A MenuBar as the child of a ToolControl	
Providing User Customisation	
The CoolBar and CoolBand Objects	
CoolBar: FixedOrder Property	
CoolBand: GripperMode Property	
CoolBar: DoubleClickToggle Property	
CoolBar: VariableHeight/BandBorders Properties	
CoolBand: ChildEdge Property	
CoolBand: Caption and ImageIndex Properties	
CoolBand: Size, Posn, NewLine, Index Properties	109
CoolBands with SubForms	
The TabControl and TabButton Objects	111
Style, FlatSeparators and HotTrack Properties	
The Align Property	113
The MultiLine Property	115
The ScrollOpposite Property	116
The Justify Property	
The TabSize and TabJustify Properties	
The TabFocus Property	
The StatusBar Object	120
Using StatusFields	122
CHAPTER 5 Hints and Tips	125
•	
Using Hints	
Example: Using a StatusField for Hints	
Example: Using an Edit Object for Hints	
Using Tips	
Hints and Tips Combined	129

CHAPTER 6 Using the Grid Object	131
Defining the Grid Layout	
Defining Overall Appearance	
Row and Column Titles	
Displaying and Editing Values in Grid Cells	
Using a Floating Edit Field	
Using a Fixed Edit Field	
Using Label Objects	138
Using Combo Objects	138
Using Radio and Check Button Objects	140
Specifying Individual Cell Attributes	142
Drawing Graphics on a Grid	146
Controlling User Input	149
Moving from Cell to Cell	
Changing Standard Validation Behaviour	149
Reacting to Changes	
Restoring User Changes	
Updating Cell Data	
Deleting Rows and Columns	
Inserting Rows and Columns	
TreeView Feature	
Introduction	
RowTreeDepth property	
RowSetVisibleDepth Method	
Grid Comments	
Introduction	
Implementation	
AddComment Method	
DelComment Method	
GetComment Method	
ShowComment Event/Method	
HideComment Event/Method	
ClickComment Event	160
CHAPTER 7 Multiple-Document (MDI) Applications	161
To Create an MDI Application	162
MDI Behaviour	
Menus in MDI Applications.	
Defining a Window Menu	
Arranging Child Forms and Icons	

CHAPTER 8 Docking	167
Introduction	
Docking Sequence of Events	
DockStart Event	
DockMove Event	
DockRequest Event	
DockAccept Event	
DockEnd Event	
DockCancel Event	
Docking a Form inside another	
Docking a Form into a CoolBar	
Undocking a SubForm or a CoolBand	
Docking and Undocking a ToolControl	
XP Look and Feel	
OHARTER O TORUR Comment	404
CHAPTER 9 TCP/IP Support	
Introduction	
Stream Sockets	
User Datagram Protocol (UDP)	
Clients and Servers	
APL as a TCP/IP Server	
Serving Multiple Clients	183
APL as a TCP/IP Client	
Host and Service Names	
Sending and Receiving Data	
Output Buffering	188
User Datagram Protocol (UDP) and APL	
Client/Server Operation	
The RUN function	
The ACCEPT function	
The RECEIVE function.	
The EXECUTE function	195
CHAPTER 10 APL and the Internet	107
Introduction	
Writing a Web Client	
The QUERY function	
The CONNECT callback function	
The RECEIVE callback function	
The CLOSE callback function	
The ERROR callback function	207

Writing a Web Server	208
The RUN function	
The ACCEPT callback function	
The RECEIVE callback function	
CHAPTER 11 OLE Automation Client and OLE Controls	213
Introduction	213
Using an OLE Server	
Loading an ActiveX Control	
Using an OLE Control.	
Type Information	
Identifying Properties, Methods and Events	
Using the Property Sheet	
Using the Workspace Explorer	
GetPropertyInfo Method	
GetMethodInfo Method.	
GetEventInfo Method	
Obtaining On-line Help	
Methods	
Calling Methods	
Arrays and Pointers	
Optional Parameters	
Output Parameters	
Named Parameters	
Methods that return Objects	
Properties	
Properties as Objects	
Events	
Using the Microsoft Jet Database Engine	
OLE Objects without Type Information	
Late Binding	
SetMethodInfo and SetPropertyInfo	
Events	
Collections	
Null Values	
Additional Interfaces	
Writing Classes based on OLEClient	

CHAPTER 12 OLE Automation Server	239
Introduction	239
Namespaces and Objects	
Writing an APL OLE Server	
Rules for Exported Functions	
Out-of-Process and In-Process OLE Servers	
ClassID, TypeLibID and other properties	242
In-process OLE Servers	
Exporting	
Execution	243
Registering and Unregistering	243
Out-of-process OLE Servers	
Exporting	
Execution	244
Registry Entries	245
The LOAN Workspace	247
Using CalcPayments	
Registering Loan as an OLE Server	249
Using Loan from Visual Basic Version 4.0	
Using Loan from Excel	
How it Works	257
Using Loan from two applications	258
Using Loan from Dyalog APL	
Implementing an Object Hierarchy	260
The CFILES Workspace	261
Registering CFiles as an OLE Server	261
The OpenFile Function	
The FSIZE Function	264
The FREAD Function	265
The FAPPEND Function	266
The FREPLACE Function	267
Using CFiles from Excel	268
The FOpen Procedure	269
The FRead Procedure	270
The FReplace Procedure	271
The FAppend Procedure	272
Configuring an <i>out-of-process</i> OLEServer for DCOM	273
Introduction	
DCOM Registry Entries for the Server	
DCOM Registry Entries for the Client	
DCOMREG Workspace	
RegDCOMServer	
RegDCOMClient	275
Config	

Calling an OLE Function Asynchronously	276
Introduction	
The OLEASYNC Workspace	
Testing dyalog. Async	
8 "J" - 8 J	
CHAPTER 13 Writing ActiveX Controls in Dyalog APL	281
Overview	282
What is an ActiveX Control?	
What is a Dyalog APL ActiveX Control?	
The Dyalog APL DLL	
Instance Creation	
Properties, Methods and Events	
Generating Events	
The Dual Control Tutorial	
Methods	
Properties	
Events	
Introducing the Dual Control	
Changing Dual into an ActiveX Control	
Testing the Dual Control	
Defining and Exporting Properties.	
Setting Properties from Visual Basic	
Defining and Exporting Events	
Using Events from Visual Basic	
Using Dual in a Web Page	
Calling Dual from VBScript	
Cuming Buar Hom VBGC1pt	
CHAPTER 14 Shared Variables (DDE)	311
Introduction to DDE	311
Shared Variable Principles	312
Introduction	312
Sharing a Variable	313
The State Vector	314
Access Control	315
APL and DDE in Practice	
APL as the Client	318
Executing Commands in the Server	319
APL as the Server	
State and Access Control	321
Terminating a Conversation	
Example: Communication Between APLs	
Example : Excel as the Server	
Example : Excel as the Client	

Example : APL as Compute Server for Excel	332
Example: Using an Excel Command Macro	
Restrictions & Limitations	
CHAPTER 15 ODBC Interface	220
Introduction	
The Checkout Utility	
ODBC Compatibility	
Using SQAPL	
Initialisation	
Connecting to a Service	
The Return Code	
SQAPL Objects	
Disconnecting from a Service	
SQADSN	
SQAGetInfo	
SQADo	
Bind Variables	
Bind Variable Syntax	
Bind Variable Data Types	
Low Level Interface	
SQAPrepare	
SQADescribe	
SQAExec	
SQAX	
SQAFetch	
SQACancel	359
SQAClose	
Large Objects and Partial Binding.	360
SQAPutData	360
SQAGetData	362
SCAR Conversion Functions	363
Transactions	
Buffers	366
Dictionary Enquiries	367
Quick Reference	368
Function Reference	369
Naming Conventions	
Function Descriptions	
Errors and Warnings	
SQAPL Error Codes (origin 1)	
Interface Error Codes (origin 5)	

CHAPTER 1

Introduction

Overview

This manual describes various interfaces between Dyalog APL and Windows.

Chapter 1 introduces the concepts of the Dyalog APL Graphical User Interface (GUI) and describes, in outline, how the system works. Chapter 2 contains a tutorial which takes you step-by-step through the implementation of a simple GUI application. Chapters 3 explains how to draw graphics using primitive graphical objects such as Poly, Bitmap and Metafile objects. Chapter 4 describes how to use toolbars, tab controls and status bars. Chapter 6 covers the important Grid object that provides a spreadsheet interface for displaying and editing tables of data and Chapters 7 and 8 describe the Multiple Document Interface (MDI) and docking. Further GUI material is provided in the WTUTOR, WTUTOR95 and WDESIGN workspaces.

Chapter 9 describes the TCP/IP interface which is implemented in the same object-oriented style. Chapter 10 explores how the TCP/IP interface is used to connect Dyalog APL to the Internet.

Chapters 11-13 describe the various ways in which Dyalog APL may communicate with other Windows applications using Component Object Model (COM) interfaces. These interfaces allow APL to act as an OLE Automation server and client, and allow you to write ActiveX controls in Dyalog APL.

Chapter 14 describes the DDE interface which is implemented using (traditional) APL shared variables. However, please note that DDE has all but been replaced by COM, and is no longer promoted as a major technology by Microsoft.

The final Chapter describes the interface to Microsoft Open Database Connectivity Drivers (ODBC) which allows you to access ODBC compliant databases from Dyalog APL.

Concepts

The Dyalog APL GUI is based upon four important concepts; **objects**, **properties**, **events** and **methods**

Objects

Objects are instances of classes that contain information and provide functionality. Most Dyalog APL objects are GUI objects that may be displayed on the screen and with which you can interact. An example of an object is a push-button (an instance of class Button) which you may press to cause the program to take a particular action. Objects are defined in hierarchies.

Objects are also **namespaces** and may contain functions, variables, and indeed other namespaces. This allows you to store the code and data that is required by a given object *within* that object. Functions and variables stored in an object are hidden and protected from conflicts with functions and variables in the outside workspace and with those in other objects.

Properties

Each object has an associated set of properties which describe how it looks and behaves. For example, a Button has a property called Caption which defines the character string to be displayed in it. It also has a property called Type which may be Push (the button appears to move in and out when it is *pressed*), Radio (the button has two states and may be toggled on and off); and so forth.

Events

During interaction with the user, an object is capable of generating events. There are essentially two types of event, **raw** events and **object** events. **Raw** events are typically associated with a particular hardware operation. Pressing a mouse button, pressing a key on the keyboard, or moving the mouse pointer are examples of raw events. An **object** event is generated by some action that is specific to the object in question, but which may typically be achieved by a variety of hardware operations.

An example is the Select event. For a Button object, this event is generated when the user *presses* the Button. In MS-Windows, this can be done in several ways. Firstly, the user may click the left mouse button over the object. Secondly, under certain circumstances, the Select event can be generated when the user presses the Enter key. Finally, the event will occur if the user presses a "short-cut" (mnemonic) key that is associated with the Button.

3

Methods

Methods are effectively functions that an object provides; they are things that you may invoke to make the object do something for you. In Dyalog APL, the distinction between methods and events is tenuous, because events also make objects perform actions and you may generate events under program control. For example, a Scroll event is generated by a scrollbar when the user moves the thumb. Conversely, you can make a scrollbar scroll by generating a Scroll event. Nevertheless, the concept of a method is useful to describe functions that can only be invoked by a program and are not directly accessible to the user.

Objects

The following objects are supported.

System Objects

Clipboard Provides access to Windows clipboard

Printer For hard-copy output Root System-level object

Container Objects

CoolBard Contains a single child object in a CoolBar CoolBar Contains resizable bands (CoolBands)

Form Top-Level Window

Group A frame for grouping Buttons and other objects

MDIClient Container for MDI windows
PropertyPage Contains a page of controls
PropertySheet Contains PropertyPages
Splitter Manages other objects

Static A frame for drawing and clipping graphics

StatusBar Ribbon statusbar

SubForm Acts as an MDI window or a constrained Form

TabBar Contains TabBtns (tabs)
TabControl Windows 95/NT Tab control

ToolBar Ribbon toolbar

ToolControl Windows 95/NT toolbar

Menu

MenuBar Pulldown menubar Menu Popup menu

MenuItem Selects an option or action Separator Separator between items

Action

Button Selects an option or action

Locator Graphical (positional) input device

Scroll Scrollbar

SysTrayItem An icon in the System Tray
TabBtn Selects a tabbed SubForm

TabButton Selects a tabbed SubForm or performs an action

Timer Generates events at regular intervals

TrackBar Slider control

ToolButton Selects an option or action

UpDown Spin button control

Information

Animation Displays an AVI clip
Label Displays static text
MsgBox Displays a message box

ProgressBar Indicates the progress of a lengthy operation

StatusField Displays status information

TipField Displays pop-up context sensitive help

Input and Selection

BrowseBox Prompts user to select a directory etc.

Calendar Displays a month calendar ColorButton Allows user to select a colour

Combo Edit field with selectable list of choices
ComboEx Extended version of the Combo (with images)

DateTimePicker Allows user to enter a date or time

Edit Input field

FileBox Prompts user to select a file

Grid Displays a data matrix as a spreadsheet

List For selecting an item

ListView Displays a collection of items

RichEdit Text field with word-processing capabilities

Spinner Input field with spin buttons
TreeView Displays a hierarchical set of items

Resource

Bitmap Defines a bitmap
Cursor Defines a cursor
Font Loads a font
Icon Defines an icon

ImageList Defines a set of bitmapped images

Metafile Loads a Windows Metafile

Graphical Output

Circle Draws a circle Ellipse Draws an ellipse

Image Displays Bitmaps, Icons and Metafiles

Marker Draws a series of polymarkers

Poly Draws lines
Rect Draws rectangles
Text Draws graphical text

Miscellaneous

ActiveXControl Represents an APL ActiveX control

OCXClass Provides access to OLE (ActiveX) Controls

OLEClient Provides access to OLE Servers
OLEServer Represents an APL OLE Server object

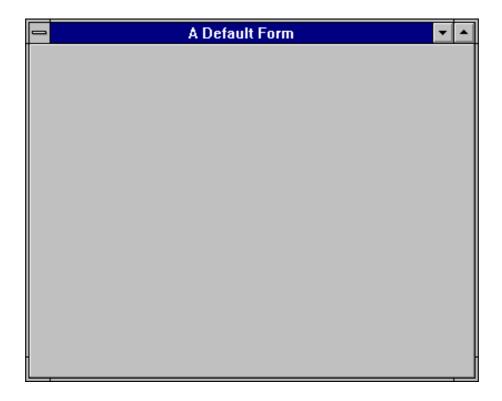
SM Specifies a window for **SM** (character mode interface)

TCPSocket Represents a TCP/IP socket

Implementation Overview

The Dyalog APL GUI is implemented by the following system functions:

System Function	Description
□wc	Creates a new object with specified properties
□ws	Sets the value(s) of selected properties for an existing object
□wG	Gets the value(s) of selected properties from an existing object
□wn	Reports the names of all the children of an object
□DQ	Waits for and processes user actions, invoking callback functions associated with events as they occur
□NQ	Generates an event under program control, or invokes a method


GUI Objects are a special type of *namespace* and have a name class of 9. They may therefore be managed like any other workspace object. This means that they can be localised in function headers and erased with $\square EX$. GUI objects are saved with your workspace and reappear when it is loaded or copied.

Creating Objects

You create objects using **WC**. Its left argument is a character vector that specifies the name of the object to be created. Its right argument specifies the object's Type and various other properties. Its (shy) result is the full pathname of the newly created object.

The following statement creates a Form called 'f1' with the title "A Default Form" and with default size, position, etc.

'f1' □WC 'Form' 'A Default Form'

9

Naming Objects

Objects are created in a hierarchy. The Form we have just created is a "top-level" object to which we can attach other child objects, like buttons, scrollbars and so forth. You can create any number of top-level objects like this, up to a limit imposed by MS-Windows and your system configuration.

For reasons which will become apparent later, there is a single Root object whose name is '.' (dot) or '#'. It acts a bit like the root directory in a DOS file structure, and is the implied parent of all the top-level objects you create.

When you create a top-level object, you don't actually have to specify that it is a child of the Root; this is implied. For any other object, you specify its position in the hierarchy by including the names of its "parent", "grand-parent", and so forth in its name.

Object names are specified in the form:

```
'grandparent.parent.child'
```

where the "." character is used to separate the individual parts of the name. There is no explicit limit to the depth of the object hierarchy, although in practice it is limited by the rules governing which objects may be children of which others.

Complete object names must be unique, although you could use the same sub-name for two objects that have different parents. For example, it would be valid to have 'form1.btn1' and 'form2.btn1'.

Apart from the "." separator, names may include any of the characters A-Z, a-z, and 0-9. They are case-sensitive, so 'Form1' is not the same name as 'form1'.

For graphical objects, it is permissible to omit the last part of the name, although the parent name must be specified followed by a "." (dot). Further information is given later in this chapter.

Specifying Properties


The right argument of **WC** is a list of properties for the object being created. Apart from trivial cases, it is always a nested vector. The first item in the list must specify the object's Type. Other properties take default values and need not always be defined. Properties are discussed more fully in the next section.

Saving Objects

Like functions, variables and operators, GUI objects are **workspace objects** and are) SAVEd with it. GUI Objects are also *namespaces* and they have a name-class of 9. The expression) OBJECTS or $\square NL$ 9 may be used to report their names. Like other namespaces, GUI objects may be copied from a saved workspace using) COPY or $\square CY$.

The Object Hierarchy

This example illustrates how an object hierarchy is defined. The following statements create a Form called 'accounts' which contains a Group called 'type' and some Buttons called 'PLAN', 'BUDGET' and 'ACTUAL'. The embedded spaces in these statements are intended only to improve clarity. The numbers refer to the object's position within its parent. This will be discussed in detail later.

Schematically, this object structure looks as follows:

```
__ACTUAL
.___accounts___type___BUDGET
__PLAN
```

Properties

Properties may be set using the system functions **DWC** and **DWS** and their values may be retrieved using **DWG**.

If the system variable **WX** is set to 1, properties may be set using assignment and referenced by name as if they were variables. This is generally faster and more convenient than using **WS** and **WG**.

Certain properties, in particular the Type property, can only be set using **WC**. There is no obvious rule that determines whether or not a property can only be set by **WC**; it is a consequence of the Windows API.

However, any property that can be set by $\square WS$ can be set using assignment and the values of all properties can be retrieved by direct reference or using $\square WG$.

Setting Properties with Assignment

You may set the value of a property using the assignment arrow ←. For example:

```
'F' □WC 'Form'
```

The following statement sets the Caption property to the string "Hello World":

```
F.Caption←'Hello World'
```

Strand assignment may be used to set several properties in a single statement:

However, distributed assignment is even more concise:

Normal namespace path rules apply, so the following are all equivalent:

```
:With 'F'
Caption←'Hello World'
Posn←40 50
Size←10 10
...
:EndWith
```

Notice however, that used directly in this way, Property names are case-sensitive. The following expressions assign values to *variables* in F and have no effect on the Caption property.

```
F.caption←'Hello World'
F.CAPTION←'Hello World'
```

Retrieving property values by reference

You may obtain the value of a property as if it were a variable, by simply referring to the property name. For example:

```
F.Caption←'Hello World'

F.Caption

Hello World
```

You can retrieve the values of several properties in one statement using strand notation:

```
F.Caption F.Posn F.Size
Hello World 40 50 10 10
```

Although, once again, the use of parentheses is even more concise:

```
F.(Caption Posn Size)
Hello World 40 50 10 10
```

Although setting and referencing a Property appears to be no different to setting and referencing a variable, it is not actually the same thing at all. When you set a Property (whether by assignment or using <code>]WC</code> or <code>]WS</code>) to a particular value you are making a request to Windows to do so; there is no guarantee that it will be honoured. For example, having asked for a Font with face name of "Courier New", you cannot change its Fixed property to 0, because the Courier New font is always fixed pitch.

```
'F'□WC'Font' 'Courier New'

F.Fixed←0
F.Fixed

1
```

Setting Properties with □**WC**

Properties may also be set by the right argument of **WC**. In these cases, they may be specified in one of two ways; either by their position in the argument, or by a keyword followed by a value. The keyword is a character vector containing the **name** of the property. Its value may be any appropriate array. Property names and value keywords are not case sensitive; thus **'Form'** could be spelled **'form'**, **'FORM'**, or even **'fOrM'**

The Type property, which specifies the type of the object, applies to **all** objects and is **mandatory**. It is therefore the first to be specified in the right argument to $\square WC$, and is normally specified without the Type keyword. The value associated with the Type property is a character vector.

With the exception of Type, all other properties have default values and need only be specified if you want to override the defaults. For example, the following statements would give you a default Button in a default Group in a default Form:

Properties are specified in a sequence chosen to put the most commonly used ones first. In practice, this allows you to specify most properties by position, rather than by keyword/value pairs. For example, the Caption property is deemed to be the "most used" property of a Button and is specified second after Type. The following two statements are therefore equivalent:

```
'F1.B1' □WC 'Button' 'OK'
'F1.B1' □WC 'Button' ('Caption' 'OK')
```

The third and fourth properties are (usually) Posn, which specifies the position of a child within its parent, and Size which specifies its size. The following statements all create a Form with an empty title bar, whose top left corner is 10% down and 20% across from the top left corner of the screen, and whose height is 60% of the screen height and whose width is 40% of the screen width.

Changing Property Values with □WS

Once you have created an object using $\square WC$, you are free to alter most of its properties using $\square WS$. However in general, those properties that define the overall structure of an object's window cannot be altered using $\square WS$. Such *immutable* properties include Type and (for some objects) Style. Note that if you find that you do need to alter one of these properties dynamically, it is a simple matter to recreate the object with $\square WC$.

The syntax for $\square WS$ is identical to that of $\square WC$. The following examples illustrate how the properties of a Button can be altered dynamically. Note that you can use $\square WS$ in a callback function to change the properties of any object, including the one that generated the event.

Create "OK" button at (10,10) that calls FOO when pressed

Some time later, change caption and size

```
'form.b1' □WS ('Caption' 'Yes') ('Size' 20 15)
```

Note that if the right argument to $\square WS$ specifies a single property, it is not necessary to enclose it.

How the Property List is Processed

The system is designed to give you as much flexibility as possible in specifying property values. You should find that any "reasonable" specification will be accepted. However, you may find the following explanation of how the right argument of $\square WC$ and $\square WS$ is parsed, useful. The casual reader may wish to skip this page.

Items in the right argument are processed one by one. If the next array in the argument is a simple array, or a nested array whose first element is not a character vector, the array is taken to be the value of the next property, taking the properties in the order defined for that object type.

When the system encounters a **nested array** whose first element is a character vector, it is checked against the list of property names. If it is not a property name, the entire array is taken to define the value of the next property as above.

If the first element **is** a property name, the remainder of the nested array is taken to be the value of the corresponding property. For convenience, considerable latitude is allowed in how the structure of the property value is specified.

After assigning the value, the parser resets its internal pointer to the property following the one named. Thus in the third and fourth examples on the preceding page, omitting the Size keyword is acceptable, because Size is the next property after Posn.

In the reference section for each object, you will find the list of properties applicable to that object, given in the order in which they are to be specified. This information is also reported by the PropList property, which applies to all objects. The list of properties may also be obtained by executing the system command) PROPS in an object's namespace.

The Event Property

Of the many different properties supported, the Event property is rather special. Most of the other properties determine an object's appearance and general behaviour. The Event property, however, specifies how the application **reacts to the user**. Furthermore, unlike most other properties, it takes not a single value, but a set of values, each of which determines the action to be taken when a particular **event** occurs. In simple terms, an *event* is something that the user can do. For example, pressing a mouse button, pressing a key, selecting an item from a menu, are all examples of *events*.

Like any other property, the Event property may be set by assignment or using $\square WC$ and $\square WS$. Using assignment, you can specify settings for the entire set of events, or you can set individual events one by one.

Each type of event has a *name* and a *number*. Although you may identify an event either by its name or by its number, the use of its name is generally preferable. The exception to this is user-defined events which may only be specified by number.

The list of events supported by a particular object is available from its EventList property, or by executing the system command) EVENTS in an object's namespace.

To specify an individual event, you assign the action to the event name which is optionally prefixed by the string 'on'. For example, the name for the event that occurs when a user presses a key is 'KeyPress'. To this you assign an *action*. Event *actions* are described in detail later in this chapter, but most commonly *action* is a character vector containing the name of a function. This is termed a *callback* function, because it will be automatically *called* for you when the corresponding event occurs. So if F1 is a Form, the statement:

```
F1.onKeyPress←'CHECK_KEY'
```

specifies that the system is to call the function CHECK_KEY whenever the user presses a key when F1 has the input focus.

Using **DWC** and **DWS**, the same effect can be obtained by:

```
'F1'□WC'Form' ('Event' 'onKeyPress' 'CHECK_KEY')
or
'F1'□WS 'Event' 'onKeyPress' 'CHECK KEY'
```

When a callback function is invoked, the system supplies an *event message* as its right argument, and (optionally) an array that you specify, as its left argument. The event message is a nested vector that contains information about the event. The first element of the event message is always either a *namespace reference* to the object that generated the event or a character vector containing its name.

To instruct the system to pass the object *name* instead of a *reference*, you must use the event name on its own (omitting the 'on' prefix) or the event number. This method is retained for compatibility with previous versions of Dyalog APL that did not support namespace references. For example, either of the following statements will associate the callback function 'CHECK_KEY' with the KeyPress event. However, when 'CHECK_KEY' is called, it will be called with the character string 'F1' in the first element of the right argument (the event message) instead of a direct reference to the object F1.

```
F1.Event←'KeyPress' 'CHECK_KEY'
'F1'□WS 'Event' 'KeyPress' 'CHECK_KEY'
'F1'□WS 'Event' 22 'CHECK_KEY'
```

Note that by default, all events are processed automatically by APL, and may be ignored by your application unless you want to take a specific action. Thus, for example, you don't have to handle Configure events when the user resizes your Form; you can just let APL handle them for you.

Before looking further into events, it is necessary to describe how control is passed to the user, and to introduce the concept of the *event queue*.

For further details, see the description of the Event property in the *Object Reference*.

User Interaction & Events

Giving Control to the User

As we have seen, **DWC** and **DWS** are used to build up the definition of the user-interface as a hierarchy of **objects** with **properties**. Notice that the interface is defined not only in terms of its appearance and general behaviour, but also by specification of the Event property, in terms of how it reacts to user actions.

Once you have defined your interface, you are ready to give control to the user. This is simply done by calling DQ. Alternatively, you may use the Wait method (if appropriate) which is identical to DQ in its operation.

□DQ performs several tasks. Firstly, it displays all objects that have been created but not yet drawn. When you create objects, Dyalog APL/W automatically buffers the output so as to avoid unpleasant flashing on the screen. Output is flushed when APL requires input (at the 6-space prompt) and by □DQ. Thus if you write a function that creates a Form containing a set of controls, nothing is drawn until, later on in the function, you call □DQ. At this point the Form and its contents are displayed in a single screen update, which is visually more pleasing than if they were drawn one by one. A second task for □DQ is to cause the system to wait for user events. Objects that you create are immediately active and capable of generating events. During development and testing, you can immediately use them without an explicit *wait*. However, unless your application uses the Session in conjunction with GUI objects you must call □DQ to cause the application to wait for user input. In a run-time application, □DQ is essential.

The right argument to <code>DQ</code> specifies the objects with which the user may interact. If it specifies '.', the user may interact with all active objects owned by the current thread and with any new objects which are created in callback functions. If not, the right argument is a simple character vector or a vector of character vectors, containing the names of one or more Form or PropertySheet objects and the Clipboard object, or the name of a single <code>modal</code> object of type FileBox, Locator, MsgBox or Menu. All specified objects must be owned by the current thread.

In general, DQ first updates the screen with any pending changes, then hands control to the user and waits for an event. If its right argument is '.' DQ processes events for all active objects, i.e. for those objects and their children whose Active property is 1. If the right argument contains the name of one or more Form and/or Clipboard objects, DQ processes events for all of these objects and their children, and (if the current thread is thread 0) for the Root object, but ignores any others, even though they may be currently active.

If the right argument specifies a single modal object, $\square DQ$ displays the object on the screen, handles user-interaction with it, and then hides the object when the user has finished with it. An event is generated according to the manner in which the user terminated.

Events are managed by both the Operating System and by DQ using a **queue**. A detailed understanding of how the queue works is not absolutely necessary, and you may skip the following explanation. However, if you are planning to develop major applications using the GUI, please continue.

The Event Queue

There are in fact two separate queues, one maintained by MS-Windows and one internal to APL. The MS-Windows queue is used to capture all events that APL needs to process. These include events for your GUI objects as well as other events concerned with APL's own Session Window, Edit Windows, etc. At various points during execution, APL reads events from the MS-Windows queue and either processes them immediately or, if they are events concerned with objects you have defined with DQ looks for its next event.

When DQ receives an event, it can either ignore it, process it internally, execute a string, call a callback function, or terminate according to the action you have defined for that event. The way you define different actions is described in detail later in this Chapter.

If you have disabled a particular event by setting its action code to -1, $\square DQ$ simply ignores it. For example, if you set the action code of a KeyPress event to -1, keystrokes in that object will be ignored. If you have told $\square DQ$ to process an event normally (the default action code of 0) $\square DQ$ performs the default processing for the event in question. For example, the default processing for a KeyPress event in an Edit object is to display the character and move the input cursor.

If you have associated a string or a callback function with a particular event in a particular object, $\square DQ$ executes the string or invokes the callback function for you. During the execution of the string or the callback function, the user may cause other events. If so, these are added to APL's internal queue but they are not acted upon immediately. When the execution of the string or the callback function terminates, control returns to $\square DQ$ which once more looks to the internal queue. If another event has been added while the callback function was running, this is read and acted upon. If not, $\square DQ$ looks to the MS-Windows queue and waits for the next event to occur.

If you have associated an **asynchronous** callback function with an event (by appending the character "&" to the name of the function), $\square DQ$ starts the callback function in a new thread and is then immediately ready to process the next event; $\square DQ$ does not wait for an asynchronous callback function to complete.

If $\square DQ$ reads an event with an associated action code of 1, it terminates and returns the **event message** which was generated by the event, as a result. During the time between $\square DQ$ terminating and you calling it again, events are discarded. Events are only stored up in the queue if $\square DQ$ is active (i.e. there is a $\square DQ$ in the state indicator). It is therefore usually better to process events using callback functions.

Assignment and reference to the Event Property

There are a number of special considerations when using assignment and reference to the Event property.

You can set the action for a single event by prefixing the Event name by "on". For example, to set the action of a MouseUp event on a Form F to execute the callback function FOO:

```
F.onMouseUp←'UP'
F.onMouseUp
#.UP
```

Notice that the value returned (#.UP) is not necessarily exactly the same as you set it (UP).

If you reference the Event property, you will obtain all the current settings, reported in order of their internal event number. Notice the use of distributed strand notation to set more than one event in the same statement.

```
F.(onMouseUp onMouseDown)←'UP' ('DOWN' 42)
F.Event
onMouseDown #.DOWN 42 onMouseUp #.UP
```

If you set the Event property using assignment, all the event actions are redefined, i.e. previous event settings are lost. For example:

```
F.(onMouseUp onMouseDown)←'UP' ('DOWN' 42)
F.Event
onMouseDown #.DOWN 42 onMouseUp #.UP

F.Event←'onMouseMove' 'MOVE'
F.Event
onMouseMove #.MOVE
```

The All event can also be set by assignment, and it too clears previous settings. Notice too that a subsequent reference to a specific event using the "on" prefix, will report the "All" setting, unless it is specifically reset.

```
F.(onMouseUp onMouseDown)+'UP' ('DOWN' 42)
F.Event
onMouseDown #.DOWN 42 onMouseUp #.UP

F.onAll+'FOO'
F.Event
onAll #.FOO

F.onMouseMove
#.FOO

F.event+'onMouseMove' 'MOVE'
F.Event
onMouseMove #.MOVE
```

If no events are set, the result obtained by $\square WG$ and the result obtained by referencing Event directly are different:

Callback Functions

By setting the action code to 1 for all the events you are interested in, you could write the control loop in your application as :

```
Loop: Event ← □DQ 'system'
test Event[1] (object name)
and Event[2] (event code)
→Label

Label: process event for object
→Loop
```

However, such code can be error prone and difficult to maintain. Another limitation is that events that occur between successive calls on $\square DQ$ are discarded.

An alternative is to use callback functions. Not only do they encourage an object-oriented modular approach to programming, but they can also be used to validate the user's actions and prevent something untoward happening. For example, a callback function can prevent the user from terminating the application at an inappropriate point. The use of callback functions will also produce applications that execute faster than those that process events by exiting $\square DQ$ and looping back again as above.

You associate a callback function with a particular event or set of events in a given object. There is nothing to prevent you from using the same callback function with several objects, but it only makes sense to do so if the processing for the event(s) is common to all of them. The object that caused the event is identified by the first element of the right argument when the callback is invoked.

When an event occurs that has an action set to a character vector, the system looks for a function with that name. If none exists DQ terminates with a VALUE ERROR. If the function does exist, it is called. If the callback function was called FOO and it stopped on line [1], the State Indicator would be:

```
)S:
FOO[1]*
[DQ
...
```

A callback function may be defined with any syntax, i.e. it may be dyadic, monadic, or niladic. If it is monadic or dyadic, $\square DQ$ calls it with the event message as its right argument. If the function is dyadic, its left argument will contain the value of the array that was associated with the event.

A callback function is otherwise no different from any other function that you can define. Indeed there is nothing to prevent you from calling one explicitly in your code. For example, a callback function that is invoked automatically could call a second callback function directly, perhaps to simulate another event.

By default, a callback function is run synchronously. This means that $\square DQ$ waits for it to return a result before attempting to process any other events. Events that are generated by Windows while the callback function is running are simply queued.

Alternatively, you may specify that a callback function is to be run **asynchronously**. In this case, $\square DQ$ starts the function in a new thread, but instead of waiting for it to complete, proceeds immediately to the next event in the queue. See Asynchronous Callbacks for further information.

Modifying or Inhibiting the Default Processing

It is often desirable to inhibit the normal processing of an event, and it is occasionally useful to substitute some other action for the default. One way of inhibiting an event is to set its action code to -1. However this mechanism is non-selective and is not always applicable. You can use it for example to ignore all keystrokes, but not to ignore particular ones.

Synchronous callback functions provide an additional mechanism which allows you to selectively inhibit default processing of an event. The mechanism also allows you to modify the event in order to achieve a different effect.

For example, you can use a callback function to ignore a **particular** keystroke or set of keystrokes, or even to replace the original keystroke with a different one. Similarly, you can use a callback function to selectively ignore a LostFocus event if the data in the field is invalid. Callback functions therefore give you much finer control over event processing. The mechanism uses the result returned by the callback function and operates as follows.

When an event occurs that has a synchronous callback function attached, $\square DQ$ invokes the callback function (passing it the event message as its right argument) before performing any other action and waits for the callback to complete. When the callback function terminates (exits) $\square DQ$ examines its result.

If the callback function returned no result, or returned a scalar 1 or the identical event message with which it was invoked, $\square DQ$ then carries out the default processing for the event in question. If the callback function returned a 0, $\square DQ$ takes no further action and the event is effectively ignored. Finally, if the callback returns a **different** event message (from the one supplied as its right argument), $\square DQ$ performs the default processing associated with the new event rather than with the original one.

For example, consider a callback function attached to a KeyPress event in an Edit object. When the user presses a key, for the sake of example, the unshifted "a" key, DQ invokes the callback function, passing it the corresponding event message as its right argument. This event message includes information about which key was pressed, in this case "a". The various possibilities are:

- If the callback function returns a value of 1 or the same event message with which it was invoked, \(\precedtgraph DQ \) carries out the default processing for the original event. In this case a lower-case "a" is displayed in the field.
- If the callback function returns a value of 0, \(\bigcup DQ \) takes no further action and the keystroke is ignored.
- If the callback function modifies the event message and changes the key from an "a" to a "b", □DQ carries out the default processing associated with the new event, and displays a lower-case "b" instead.

Note that asynchronous callback functions may not be used to modify or inhibit the default processing because their results are ignored.

Chapter 1: Introduction

Generating Events using □**NQ**

The **NQ** system function is used to generate events under program control and has several uses.

Firstly, it can be used to do something automatically for the user. For example, the following expression gives the input focus to the object Form1.ED1.

```
□NQ 'Form1.ED1' 'GotFocus'
```

Secondly, $\square NQ$ can be used to generate user-defined events which trigger special actions either by invoking callback functions or by causing $\square DQ$ to terminate. For example, if you were to define the Event property on 'Form1' as:

The expression:

```
NQ 'Form1' 1001 'Hello' 42
```

would cause DQ to invoke the function FOO, passing it the entire event message ('Form1' 1001 'Hello' 42) as its right argument. Similarly, the expression:

```
□NQ 'Form1' 1002 23.59
```

would cause DQ to terminate with the array ('Form1' 1002 23.59) as its result.

□NQ can be used to generate events in one of three ways which affect the **context** in which the event is processed.

If it is used monadically as in the examples above, or with a left argument of 0, $\square NQ$ adds the event specified in its right argument onto the bottom of the event queue. The event is then processed by $\square DQ$ when it reaches the head of the queue. You can add events to the queue **prior** to calling $\square DQ$, or from within a callback function which is itself called by $\square DQ$. In either case, the context in which the event is finally processed may be completely different from the context in which the event was placed on the queue. When used in this way, the result of $\square NQ$ is always an empty character vector.

If you use $\square NQ$ with a left argument of 1, the event is processed there and then by $\square NQ$ itself. If there is a callback function attached to the event, $\square NQ$ invokes it directly. Thus like $\square DQ$, $\square NQ$ can appear in the State Indicator $\square SI$ or) SI. This use of $\square NQ$ is used to generate an event for an object that is not currently included in a $\square DQ$, and is the usual way of generating the special (non-user) events on the Printer and other objects. It is also used when you want to cause an event to occur **immediately** without waiting for any events already in the queue to be processed first. When used in this way, the result of $\square NQ$ is either an empty character vector, or the result of the callback function if one is attached.

If you use $\square NQ$ with a left argument of 2, APL immediately performs the default processing (if any) for the event, bypassing any callback function. This case of $\square NQ$ is often used *within* a callback function to put the object into the state that it would otherwise be in when the callback terminated. When used in this way, the result of $\square NQ$ is 1. To avoid processing the event twice, the callback function should return 0.

The use of $\square NQ$ with a left argument of 2, is the same as calling the event as a method, and this is discussed in the next section.

A left argument of 4 is a special case that is used by an ActiveXControl or NetType object to generate an event in its host application. See Chapter 13 for details.

Chapter 1: Introduction

Methods

Calling Methods

A method is similar to a function in that it may or may not take an argument, perform some action, and return a result.

Examples are the Print, NewPage, Setup and Abort methods, all of which cause a Printer object to take a particular action.

If the system variable **WX** is 1, you may invoke an object's method using exactly the same syntax as you would use to call a function in that object.

For example, to execute the IDNToDate method of a Calendar object named F.CAL, you can use the expression:

```
F.CAL.IDNToDate 36525
2000 1 1 5
```

When you call a method in this way, the method name is case-sensitive and if you spell it incorrectly, you will get a VALUE ERROR.

```
F.CAL.idntodate 36525
VALUE ERROR
F.C.idntodate 36525
```

Invoking Methods with □NQ

Methods may also be called using $\square NQ$ with a left argument of 2, indeed if $\square WX$ is 0, this is the only way to call a method.

The result of the method is returned by $\square NQ$. Note however that the result is *shy*.

For example, for a TreeView object you can obtain status information about a particular item in the object using the GetItemState method:

```
□←2 □NQ 'f.tv' 'GetItemState' 6
```

Or you can call the IDNToDate method of a Calendar object F.C as follows:

```
□+2 □NQ 'F.CAL' 'IDNToDate' 36525
2000 1 1 5
```

When you call a method using 2 **DNQ**, the method name is **not** case-sensitive.

Events as Methods

Methods and events are closely related and most events can be invoked as methods.

For example, you can reposition and resize a Form in one step by calling its Configure event as a method. The argument you supply is the same as the event message associated with the event, but with the first two items (Object and Event code) omitted.

```
F.Configure 10 10 30 20

Or, using 2 DNQ
2 DNQ 'F' 'Configure' 10 10 30 20
```

Notice that when you call an event as a method, you are executing the *default processing* associated with the event. The setting for the Event property is ignored and, in particular, any callback associated with the event is not executed.

GUI Objects as Namespaces

GUI objects are a special type of namespace and this has several useful implications. Firstly, instead of creating the children of an object from *outside* in the workspace, you can use) CS to change to an object and create them from within. The only restriction is that you can only create GUI objects that are valid as children of the current object. A second benefit is that you can put the callback functions, together with any global variables they require, into the objects to which they apply. Consider the following example.

First make a Form F1

```
'F1' □WC 'Form' 'GUI Objects as Namespaces' ('Size' 25 50)
```

Then change to the Form's namespace

Now you can create a Group (or any other child object), but because you are already *inside* the Form, the name you give to the Group will be taken as being *relative* to the Form. In other words, you must specify the part of the name that applies to the Group itself, leaving out the 'F1.' prefix that you would use if you executed the statement *outside* in the workspace.

```
'CH' □WC 'Group' 'Counter' (10 10)( 70 60)
```

You can continue to create other objects

```
'OK' □WC 'Button' '&Ok' (20 80)(0 15)
'CAN' □WC 'Button' '&Cancel' (60 80) (0 15)
'FNT' □WC 'Font' 'Arial' 16 ('Weight' 700)
```

If you ask for a list of objects, you will see only those within the current namespace

```
)OBJECTS
CAN CH FNT OK
```

When you are inside an object you can also set (or get) a property directly, so you can set the FontObj property for the Form with the following statement.

```
FontObj+'FNT'
```

You can achieve the same with **WS** by omitting its left argument:

```
□WS 'FontObj' 'FNT'
```

You can create a child of the Group from outside it ...

```
'CH.UP' [WC 'Button' '+1' (20 10)(30 20)
```

or you can change to it and create others from within ...

Once again, if you request a list of objects you will see only those in the current namespace.

```
)OBJECTS
CTR DOWN FNT UP
```

You can create functions and variables in a GUI namespace in exactly the same way as in any other. So, for example, you could create a variable called COUNT and a function CHANGE to update it:

```
COUNT ← 0

▼ INCR CHANGE MSG

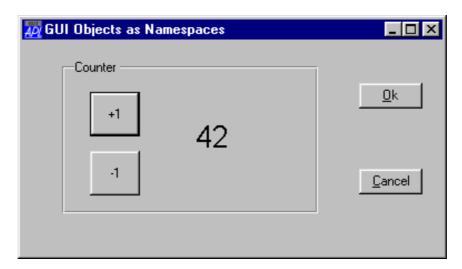
[1] COUNT+COUNT+INCR

[2] CTR.Value+COUNT

▼
```

You can also make CHANGE a callback function for the two Buttons.

```
UP.onSelect←'CHANGE' 1
DOWN.onSelect←'CHANGE' -1
```


Notice that because you were in the F1.CH namespace when you made this association, the event will fire the function CHANGE in the F1.CH namespace and, furthermore, it will execute it within that namespace. Hence the names referenced by the function are the local names, i.e. the variable COUNT and the Label CTR, within that namespace.

So if you now switch back to the outer workspace

)CS

and click on the buttons ...

The result will appear approximately as shown below

Attaching GUI Objects to Namespaces

Monadic **WC** is used to *attach* a GUI component to an existing object. The existing object must be a pure namespace or an appropriate GUI object (one that can legitimately be placed at that point in the object hierarchy). The operation may be performed by changing space to the object or by running **WC** *inside* the object using the *dot* syntax. For example, the following statements are equivalent.

```
#.F

#.F

| WC 'Form' A Attach a Form to this namespace

)CS

#
F.□WC'Form' A Attach a Form to namespace F
```

Monadic **WC** is often used in conjunction with the KeepOnClose property. This property specifies whether or not an object remains in existence when its parent Form (or in the case of a Form, the Form itself) is closed by the user or receives a Close event.

This facility is particularly useful if you wish to have functions and variables encapsulated within your Forms. You may want to save these structures in your workspace, but you do not necessarily want the Forms to be visible when the workspace is loaded.

An alternative way to achieve this is to prevent the user from closing the Form and instead make it invisible. This is achieved by intercepting the Close event on the Form and set its Visible property to 0. Then, when the Form is subsequently required, its Visible property is set back to 1. However, if the Form needs adjustment because the workspace was loaded on a PC with different screen resolution or for other reasons, it may not be easy to achieve the desired result using $\square WS$. Monadic $\square WC$ is generally a better solution.

Chapter 1: Introduction

Namespace References and GUI Objects

The use of a GUI name in an expression is a reference to the GUI object, or *ref* for short. If you assign a *ref* or call a function with a *ref* as an argument, the *reference* to the GUI object is copied, not the GUI object itself.

So for example, if you have a Form named F:

```
'F'□WC 'Form'
```

Assigning F to F1, does not create a second Form F1; it simply creates a second reference (F1) to the Form F. Subsequently, you can manipulate the Form F using either F or F1.

```
F1←F
F1
#.F
F1.Caption←'Hello World'
F.Caption
Hello World
```

Similarly, if you call a function with F as the argument, the local argument name becomes a second reference to the Form, and a new Form is not created:

Here is a simple function which approximately centres a Form in the middle of the screen:

```
V R+SHOW_CENTRE FORM;OLD;SCREEN

SCREEN+⇒'.'□WG'DevCaps'

OLD+FORM.Coord

FORM.Coord+'Pixel'

R+FORM.Posn+[0.5×SCREEN-FORM.Size

FORM.Coord+OLD
```

The function can be called using either F or F1 (or any other Form) as an argument:

```
SHOW_CENTRE F
287 329
SHOW_CENTRE F1
287 329
```

A *ref* to a GUI object can conveniently be used as the argument to :With; for example, the SHOW CENTRE function can instead be wrtten as follows:

```
▼ R←SHOW_CENTRE FORM;OLD;SCREEN

[1] SCREEN←⊃'.'□WG'DevCaps'

[2] :With FORM

[3] OLD←Coord

[4] Coord←'Pixel'

[5] R←Posn←[0.5×SCREEN-Size

[6] Coord←OLD

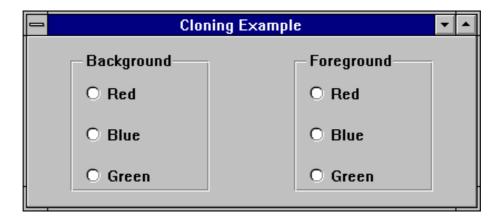
[7] :EndWith
```

If instead, you actually want to duplicate (clone) a GUI object, you may do so by calling **WC** with a *ref* as the right argument and the new name as the left argument.

For example:

```
'F' □WC 'Form' 'Cloning Example'
'F.B' □WC 'Group' 'Background' (10 10)(80 30)
'F.B.R' □WC 'Button' 'Red' (20 10)('Style' 'Radio')
'F.B.B' □WC 'Button' 'Blue' (50 10)('Style' 'Radio')
'F.B.G' □WC 'Button' 'Green' (80 10)('Style' 'Radio')
```

Then, instead of creating a second Group for selecting Foreground colour line by line as before, you can clone the "Background" Group as follows:


```
'F.F' DWC F.B
```

The new Group F.F is an exact copy of F.B and will have the same Posn, Size and Caption, as well as having identical children. To achieve the desired result, it is therefore only necessary to change its Posn and Caption properties; for example:

```
F.F.Caption F.F.Posn ← 'ForeGround' (10 60)
```

Chapter 1: Introduction

The result is illustrated below.

Note that when a namespace is cloned in this way, the objects (functions, variables and other namespaces) within it are not necessarily duplicated. Instead, the objects in cloned namespaces are in effect just pointers to the original objects. However, if you subsequently change the clone, or the original object to which it refers, the two are decoupled and a second *copy* ensues. This mechanism makes it possible to create large numbers of *instances* of a single *class* namespace without consuming an excessive amount of workspace.

Modal Dialog Boxes

Up to now, it has been assumed that your user has constant access to all of the interface features and controls that you have provided. The user is in charge; your application merely responds to his requests.

Although this is generally considered desirable, there are times when a particular operation must be allowed to complete before anything else can be done. For example, an unexpected error may occur and the user must decide upon the next course of action (e.g. Continue, Restart, Quit). In these situations, a *modal* dialog box is required. A modal dialog box is one to which the user must respond before the application will continue. While the modal dialog box is in operation, interaction with all other objects is inhibited.

A modal dialog box is simply achieved by calling \(\backslash \mathbb{Q} \) with just the name of the corresponding Form in its argument. This can be done from within a callback function or indeed from any point in an application. To make the local \(\backslash \mathbb{Q} \) terminate, you may specify an action code of 1 for an event. Alternatively, if you wish to make exclusive use of callback functions to process events, you can cause the \(\backslash \mathbb{Q} \) to terminate by erasing the Form from a callback function.

For example, suppose that you want the user to close the dialog box by clicking an "OK" button. You would specify the Event property for the Button as:

```
('Event' 'Select' 'EXIT')

... and the function EXIT is simply ...

▼ EXIT Msg;BTN;Form

[1] A Terminate modal □DQ by erasing Form

[2] OBJ←⇒→Msg

[3] Form←(-1+OBJī'.')↑OBJ A Get Form name

□EX Form

▼
```

Note that this function is fairly general, as it gets the name of the Form from the name of the object that generated the event.

The MsgBox and FileBox Objects

The MsgBox and FileBox objects are standard MS-Windows dialog boxes and are strictly modal. The following discussion refers to the way a MsgBox is used, but applies equally to a FileBox.

The MsgBox is a pop-up modal dialog box with a title bar (defined by the Caption property), an icon (defined by the Style property), some text (defined by the Text property) and up to three buttons (defined by the Btns property).

The MsgBox does not appear on the screen when you create it with $\square WC$. Instead, it pops up ONLY when you call $\square DQ$ with the name of the MsgBox as its sole right argument. Furthermore, the MsgBox automatically pops down when the user clicks on any one of its buttons; you don't actually have to enable any events to achieve this. For example:

```
'ERR' □WC 'MsgBox' 'Input Error' '' 'Error'
```

creates an invisible MsgBox with the title (Caption) 'Input Error', no text, and a Style of 'Error'. This gives it a "Stop sign" icon. When you want to issue an error message to your user, you simply call a function (let's call it ERRMSG) which is defined as follows:

```
V ERRMSG Msg
[1] A Displays 'ERR' message box
[2] ERR.Text←Msg A Put Msg in box
[3] □DQ 'ERR'
```

Note that $\square DQ$ will terminate automatically when the user clicks one of the buttons in the MsgBox object.

In this case we were not interested in the particular button that the user pressed. If you are interested in this information, you can enable special events associated with these buttons. For details, see the description of the MsgBox and FileBox objects in the Object Reference.

Multi-Threading with Objects

The following rules apply when using threads and objects together.

- 1. All events generated by an object are reported to the thread that *owns* the object and cannot be detected by any other threads. A thread *owns* an object if it has created it or inherited it. If a thread terminates without destroying an object, the ownership of the object and its events passes to the parent thread.
- 2. The Root object '.' and the Session object \(\Boxed{SE} \) are owned by thread 0. Events on these objects will be only be detected and processed by \(\Boxed{DQ} \) running in thread 0, or by the implicit \(\Boxed{DQ} \) that runs in the Session during development.
- 3. Several threads may invoke □DQ concurrently. However, each thread may only use □DQ on objects that it owns. If a thread attempts to invoke □DQ on an object owned by another thread, it will fail with DOMAIN ERROR.
- 4. Any thread may execute the expression \(\bar{\textsf{DQ}} \\ '\cdot\', \text{ however:} \)
 - 4.1. In thread 0, the expression DQ '.' will detect and process events on the Root object and on any Forms and other top-level objects owned by thread 0 or created by callbacks running in thread 0. The expression will terminate if there are no active and visible top level objects **and** there are no callbacks attached to events on Root.
 - 4.2. In any other thread, the expression \(\backslash \backslash \cdot \b
- 5. A thread may use \(\subseteq NQ \) to *post* an event to an object owned by another thread, or to invoke the default processing for an event, or to execute a method in such an object. This means that the following uses of \(\subseteq NQ \) are allowed when the object in question is owned by another thread:

```
NQ object event...
0 NQ object event...
2 NQ object event...
2 NQ object method...
3 NQ ole_object method...
4 NQ activexcontrol event...
```

The only use of **INQ** that is prohibited in these circumstances is

```
1 □NQ object event...
```

which will generate a DOMAIN ERROR.

6. While a thread is waiting for user response to a *strictly modal* object such as a MsgBox, FileBox, Menu or Locator object, any other threads that are running remain suspended. APL is not able to switch execution to another thread in these circumstances.

Chapter 1: Introduction

The Co-ordinate System

Each object has a Coord property that determines the units in which its Posn and Size properties are expressed. Coord may be set to one of the following values:

'Inherit': this means that the object assumes the same co-ordinate

system as its parent. This is the default for all objects except

the Root object.

'Prop' : the position and size of the object are expressed as a

percentage of the dimensions of its parent.

'Pixel': the position and size of the object are expressed in pixels.

'User': the position and size of the object are expressed in units

defined by the YRange and XRange properties of the object's

parent.

'Cell': the position and size of the object are expressed in cell

coordinates (applies only to Grid and its graphical children).

By default, the value of Coord for the Root object is 'Prop'. For all other objects, the default is 'Inherit'. This means that the default co-ordinate system is a proportional one.

You can change Coord from one value to another as you require. It only affects the units in which Size and Posn are currently expressed. The physical position and size are unaffected. Note that if you set Posn and/or Size in the same $\square WC$ or $\square WS$ statement as you set Coord, it is the **old** value of Coord that is applied.

The co-ordinate system is also independent of the way in which objects are reconfigured when their parent is resized. This is perhaps not immediately obvious, as it might be expected that objects which are specified using Pixel co-ordinates will be unaffected when their parent is resized. This is not necessarily the case as the manner in which objects respond to their parent being resized is determined **independently** by the AutoConf and Attach properties.

The User co-ordinate system is useful not only to automate scaling for graphics, but also to perform scrolling. This is possible because XRange and YRange define not just the scale along each axis, but also the position of the origin of the co-ordinate system in the parent window.

Colour

Colours are specified using the FCol (foreground colour) and BCol (background colour) properties. Graphical objects have an additional FillCol (fill colour) property.

A single colour may be specified in one of two ways, either as a negative integer that refers to one of a set of standard Windows colours, or as a 3-element numeric vector. The latter specifies a colour directly in terms of its red, green and blue intensities which are measured on the scale of 0 (none) to 255 (full intensity). Standard Windows colours are:

Colour Element		Colour Element		
Default	-11	Active Border		
Scroll Bars	⁻ 12	Inactive Border		
Desktop	⁻ 13	Application Workspace		
Active Title Bar	⁻ 14	Highlight		
Inactive Title Bar	⁻ 15	Highlighted Text		
Menu Bar	⁻ 16	Button Face		
Window Background	⁻ 17	Button Shadow		
Window Frame	⁻ 18	Disabled Text		
Menu Text	⁻ 19	Button Text		
Window Text	-20	Inactive Title Bar Text		
Active Title Bar Text	-21	Button Highlight		
	Default Scroll Bars Desktop Active Title Bar Inactive Title Bar Menu Bar Window Background Window Frame Menu Text Window Text	Default 711 Scroll Bars 712 Desktop 713 Active Title Bar 714 Inactive Title Bar 715 Menu Bar 716 Window Background 717 Window Frame 718 Menu Text 719 Window Text 720		

A colour specification of 0 (which is the default) selects the appropriate background or foreground colour defined by your current colour scheme for the object in question. For example, if you select yellow as your MS-Windows Menu Bar colour, you will get a yellow background in Menu and MenuItem objects as the default if BCol is not specified.

To select a colour explicitly, you specify its RGB components as a 3-element vector. For example :

(255	0	0) = red	(0	255	0) = green
(255	255	0) = yellow	(192	192	192) = grey
(0	0	0) = black	(255	255	255) = white

Note that the colour **actually realised** depends upon the capabilities of the device in question and the current contents of the Windows colour map.

A colour specification of Θ (zilde) selects a transparent colour.

Fonts

In keeping with the manner in which fonts are managed by Microsoft Windows and other GUI environments, Dyalog APL treats fonts as objects which you create (load) using **DWC** and erase (unload) using **DEX** or localisation.

A Font **object** is created and assigned a name using **WC**. This name is then referenced by other objects via their FontObj **properties**. For example to use an Arial bold italic font of height 32 pixels in two Labels:

If a font is referenced by more than one Form, you should create the Font as a top-level object, as in the above example. However, if the font is referenced by a single Form, you may make the Font object a child of that Form. The font will then automatically be unloaded when you erase the Form with which it is associated.

Compatibility Note:

In the first release of Dyalog APL/W (Version 6.2), fonts were referenced **directly** by the FontObj property. The above example would have been achieved by:

Although this original mechanism continues to be supported, it is recommended that you use the method based on Font **objects** which supersedes it.

Drag and Drop

Dyalog APL/W provides built-in support for drag/drop operations through the Dragable property. This applies to all object for which drag/drop is appropriate.

The default value of Dragable is 0 which means that the object cannot be drag/dropped. To enable drag/drop, you can set it to 1 or 2. A value of 1 means that the user drags a box that represents the bounding rectangle of the object. In general, a value of 2 means that the user drags the outline of the object itself, whether or not it is rectangular. However, there are two exceptions. For a Text object, ('Dragable' 2) means that the user drags the text itself. For an Image object that contains an Icon, ('Dragable' 2) means that the user drags the icon itself, and not just its outline.

If Dragable is 1 or 2, the user may drag/drop the object using the mouse.

When the user drops an object, the default processing for the event is:

- a) If the object is dropped over its parent, it is moved to the new location.
- b) If the object is dropped over an object other than its parent, the dragged object remains where it is.

If you enable the DragDrop event (11) on all eligible objects, you can control what happens explicitly. If an object is dropped onto a new parent, you can move it by first deleting it and then recreating it. Note that you must give it a new name to reflect its new parentage. Note too that the DragDrop event reports co-ordinates relative to the object being dropped **on**, so it is easy to rebuild the object in the correct position and with the correct size.

An alternative to using the built-in drag/drop operation is to do it yourself with the Locator object. This is no less efficient and has the advantage that you can choose which mouse button you use. It can also be used to move a group of objects. However, the Locator only supports a rectangular or elliptical outline.

Chapter 1: Introduction

Debugging

Four features are built into the system to assist in developing and debugging GUI applications.

Firstly, if you execute **WC** and/or **WS** statements from the Session or by tracing a function, they have an **immediate** effect on the screen. Thus you can see immediately the visual result of an expression, and go back and edit it if it isn't quite what you want.

Secondly, if you use **WC** with an existing name, the original object is destroyed and then re-created. This allows you to repeatedly edit and execute a single statement until it gives the effect you desire.

Thirdly, if you TRACE a DQ statement, any callback functions that are invoked will be traced as they occur. This is invaluable in debugging. However, callbacks invoked by certain "raw" events, for example MouseMove, can be awkward to trace as the act of moving the mouse pointer to the Trace window interferes with the operation in the object concerned.

Finally, $\square NQ$ can be used to artificially generate events and sequences of events in a controlled manner. This can be useful for developing repeatable test data for your application.

Creating Objects using **INEW**

With the introduction of Classes in Version 11.0, you may manipulate Dyalog GUI objects as Instances of built-in (GUI) Classes. This approach supplements (but does not replace) the use of DWC, DWS and so forth.

To create a GUI object using **NEW**, the Class is given as the GUI Object name and the Constructor Argument as a vector of (Property Name / Property Value) pairs. For example, to create a Form:

```
F1←□NEW 'Form' (c'Caption' 'Hello World')
```

Notice however that only perfectly formed name/value pairs are accepted. The highly flexible syntax for specifying Properties by position and omitting levels of enclosure, that is supported by $\square WC$ and $\square WS$, is not provided with $\square NEW$.

Naturally, you may reference and assign Properties in the same way as for objects created using $\square WC$:

Callbacks to regular defined finctions in the Root or in another space, work in the same way too. If function FOO merely displays its argument:

Note that the first item in the event message is a ref to the Instance of the Form.

To create a control such as a Button, it is only necessary to run **NEW** inside a ref to the appropriate parent object. For example:

```
B1←F1. □NEW 'Button' (('Caption' '&OK')('Size' (10 10)))
```

As illustrated in this example, it is not necessary to assign the resulting Button Instance to a name *inside* the Form (F1 in this case). However, it is a good idea to do so so that refs to Instances of controls are expunged when the parent object is expunged. In the example above, expunging F1 will not remove the Form from the screen because B1 still exists as a ref to the Button. So, the following is safer:

```
F1.B1←F1.□NEW'Button'(('Caption' '&OK')('Size' (10 10)))

Or pehaps better still,

F1.(B1←□NEW 'Button'(('Caption' '&OK')('Size' (10 10))))
```

CHAPTER 2

GUI Tutorial

Introduction

This tutorial illustrates how to go about developing a GUI application in Dyalog APL/W. It is necessarily an elementary example, but illustrates what is involved. The example is a simple Temperature Converter. It lets you enter a temperature value in either Fahrenheit or Centigrade and have it converted to the other scale.

Some Concepts

Objects

Objects are GUI components such as Forms, Buttons and ScrollBars. You create objects using the system function Dwc. Its left argument is a name for the object; its right argument specifies the object type and various properties. Objects are created in a hierarchy.

Properties

Properties specify the appearance and behaviour of an object. For example, the Caption property specifies the text that appears on a Button or the title that appears in the title bar on a Form. When you create an object with DWC, its right argument specifies its properties. You can also set properties using DWS. This lets you dynamically alter the appearance and behaviour of an object as required.

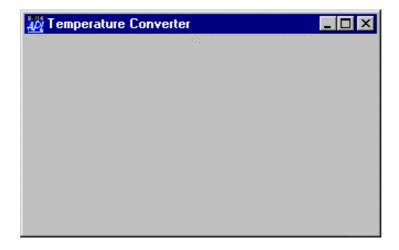
Events

Events are things that happen in objects as a result (usually) of some action by the user. For example, when the user clicks a MenuItem, it generates a Select event. Similarly, when the user focuses on an object, it generates a GotFocus event.

Callback Functions

Callback Functions are APL functions that you can associate with a particular event in a particular object. Interaction with the user is controlled by the system function $\square DQ$. This function performs all of the routine tasks involved in driving the GUI interface. However, its main role is to invoke your callback functions for you as and when events occur.

That's enough theory for now ... let's see how it all works in practice.

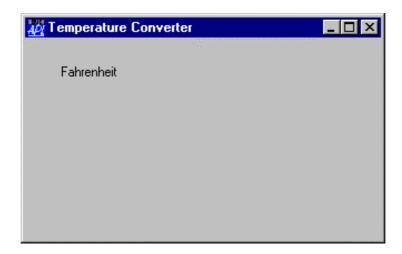

Creating a Form

The first task is to create a Form which is to act as the main window for our application. We will call the Form 'TEMP' and give it a title (Caption) of "Temperature Converter".

We will position the Form 68% down and 50% along the screen. This will avoid it interfering with the APL Session Window, and make development easier.

The Form will have a height equal to 30% of the height of the screen, and a width of 40% of the screen width.

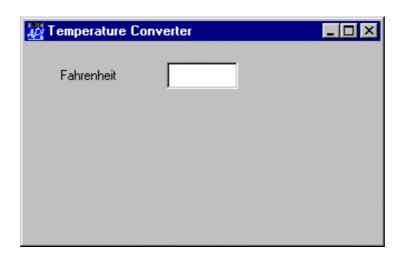
```
TITLE←'Temperature Converter'
'TEMP' □WC 'Form' TITLE (68 50)(30 40)
```



Adding a Fahrenheit Label

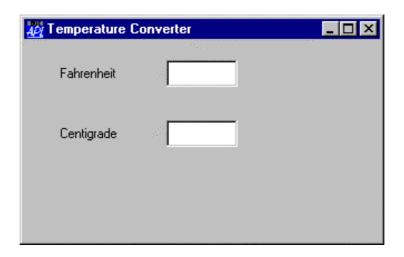
We are going to need two edit fields to input and display temperatures and two labels to identify them.

Let's create the "Fahrenheit" label first. It doesn't really matter what we call it because we won't need to refer to it later. Nevertheless, it has to have a name. Let's call it LF. We will place it at (10,10) but we don't need to specify its Size; DWC will make it just big enough to fit its Caption.


'TEMP.LF' □WC'Label' 'Fahrenheit'(10 10)

Adding a Fahrenheit Edit Field

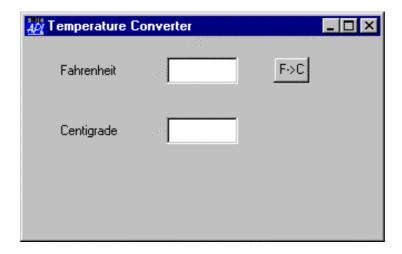
Now let's add the edit field for Fahrenheit. We will call it F and place it alongside the label, but 40% along. Initially the field will be empty. We will make it 20% wide but let its height default. DWC will make it just big enough to fit the current font height. As the field is to handle numbers, we will set its FieldType to 'Numeric'.


'TEMP.F' □WC 'Edit' '' (10 40)(0 20)('FieldType' 'Numeric')

Adding a Centigrade Label & Edit Field

Now we need to add a corresponding Centigrade label and edit field. We'll call these objects LC and C respectively, and place them 40% down the Form.

```
'TEMP.LC' ||WC'Label' 'Centigrade' (40 10)
'TEMP.C' ||WC 'Edit' '' (40 40)(8 20)('FieldType' 'Numeric')
```



Adding Calculate Buttons

Our Temperature Converter must work both ways; from Fahrenheit to Centigrade and vice versa. There are a number of different ways of making this happen.

A simple approach is to have two buttons for the user to press; one for Fahrenheit to Centigrade, and one for Centigrade to Fahrenheit. We will call the first one F2C and place it alongside the Fahrenheit edit field. The caption on this button will be 'F->C'. When the user presses the button, we want our application to calculate the centigrade temperature. For this we need a *callback function*. Let's call it f2c. Notice how you associate a callback function with a particular event. In this case, the Select event. This event is generated by a Button when it is pressed.

(The statement below is broken into two only so as to fit on the page)

```
FB←'Button' 'F->C' (10 70)('Event' 'Select' 'f2c')
'TEMP.F2C'□WC FB
```


Notice that it is not necessary to specify the Size of the button; the default size fits the Caption nicely. Now let's add the Centigrade to Fahrenheit button. This will be called C2F and have an associated callback function c2f. We could have chosen to have a single callback function associated with both buttons, which would save a few lines of code. Having separate functions is perhaps clearer.

Again, the statement is split into two only to make it fit onto the page.

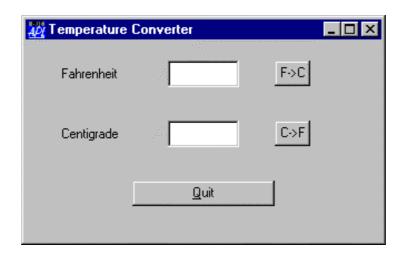
```
FC←'Button' 'C->F' (40 70)('Event' 'Select' 'c2f')
'TEMP.C2F'□WC FC
```


Closing the Application Window

Then we need something to allow our user to terminate our application. He will expect the application to terminate when he closes the window. We will implement this by having a callback function called QUIT which will simply call $\square OFF$, i.e.

We can associate this with the Close event on the Form TEMP. This event will be generated when the user closes the window from its System Menu

Although here we have used assignment to set the Event property, we could just as easily have defined it when we created the Form by adding ('Event' 'Close' 'QUIT') to the right argument of DWC.


Adding a Quit Button

Finally, we will add a "Quit" button, attaching the same QUIT function as a callback, but this time to the Select event which occurs when the user presses it.

Instead of having a default sized button, we will make it nice and big, and position it centrally.

To make the statement fit on the page, it is split into three. The Posn and Size properties are explicitly named for clarity.

```
QB←'Button' '&Quit' ('Posn' 70 30)
QB,←('Size' & 40)('Event' 'Select' 'QUIT')
'TEMP.Q' □WC QB
```


Notice how the ampersand (&) in the Caption is used to specify the *mnemonic* (short-cut) key. This can be used to press the button instead of clicking the mouse.

The Calculation Functions

So far we have built the user-interface, and we have written one callback function QUIT to terminate the application. We now need to write the two functions f2c and c2f which will actually perform the conversions. First let's tackle f2c.

A callback such as this one performs just one simple action. This does not depend upon the type of event that called it (there is only one), so the function has no need of arguments. Neither does it need to do anything fancy, such as preventing the event from proceeding. It need not therefore return a result. The header line, which includes the local variables we will need, is then ...

The first thing the function must do is to obtain the contents of the Fahrenheit edit field which is called TEMP.F. As we have defined the FieldType as 'Numeric', this is easily done by querying its Value property ...

```
[1] F ← TEMP.F.Value
```

Next, we need to calculate Centigrade from Fahrenheit ...

[2]
$$C \leftarrow (F-32) \times 5 \div 9$$

... and finally, display the value in the Centigrade edit field. As we have also defined this as a numeric field, we can just set its Value property using assignment.

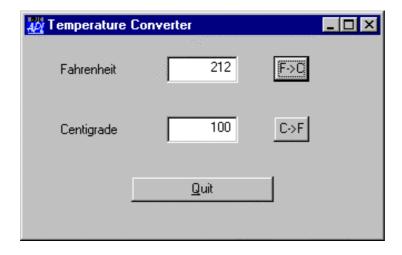
```
[3] TEMP.C.Value←C
```

So our completed f2c callback function is ...

```
∇ f2c;F;C
[1] F ← TEMP.F.Value
[2] C ← (F-32) × 5÷9
[3] TEMP.C.Value←C
```

which can be simplified to:

The Centigrade to Fahrenheit callback function c2f looks very similar:


Testing the Application

Before we test our application, it would be a good idea to) SAVE the workspace. If you remember, the QUIT callback calls <code>OFF</code>, so if we don't want to lose our work ...

```
)SAVE TEMP
TEMP saved ...
```

Note that the GUI objects we have created are all saved with the workspace. You don't have to re-build them every time you) LOAD it again.

If this was a Run-Time application, we would have to use $\square DQ$ to run it. However, as it is not, we can just go ahead and use it from the Session. Click on the Fahrenheit edit field and enter a number (say 212). Now click on the "F->C" button. The Temperature Converter window should look like the picture below.

If you have mis-typed any of the functions in this example, you may get an error. If this happens, don't worry; simply correct the error as you would with any other APL application, and type →□LC.

If you got a VALUE ERROR error, you have probably mis-spelt the name of the callback function. If so, you can fix it using DWS to reset the appropriate Event property.

Don't click the "Quit" button or close the window (yet). If you do so your APL session will terminate.

If you want to follow what is happening you can use the Tracer. This requires a statement to trace, so we will use $\square DQ$ just as you would in a real application. To do this, type $\square DQ$ '.' in the Session window, then, instead of pressing Enter (to execute it), press Ctrl+Enter (to Trace it). Having done this, enter your data into one of the edit fields and click the "F->C" or "C->F" buttons as before. When you do so, your callback function will pop-up in a Trace Window. Step it through (if in doubt, see the section on the Tracer) and watch how it works. When the callback has finished, its Trace window disappears. Don't forget, you are running a $\square DQ$. To terminate it, press Ctrl+Break or select Interrupt from the Action menu.

Making the Enter Key Work

Ok, so the basic application works. Let's look at what we can do to improve it.

The first thing we can do is to let the user press the Enter key to make the system recalculate, rather than having to click on a button. There are a number of alternatives, but we will do it using the Default property of Buttons.

In any Form, you can allocate a single Button to be the Default Button. In simple terms, pressing Enter anywhere in the Form has the same effect as clicking the Default Button. Let's do this for the "F->C" Button:

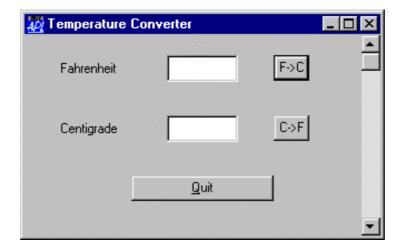
TEMP.F2C.Default←1

Now type a number into the Fahrenheit field and then press the Enter key. As you will see, this fires the Default Button labelled "F->C". The only problem with this is that the user cannot run the calculation the other way round using the Enter key. We need some mechanism to switch which Button is the Default one depending upon which field the user typed in.

This is easily achieved by making use of the GotFocus event. This is generated when the user puts the cursor into the edit field prior to typing. So all we need do is attach a callback to set the Default Button whenever a GotFocus event occurs in either edit field. We could use two separate callbacks or we could make use of the fact that you can make APL supply data of your choice to a callback when it is fired. This is supplied as its left argument.

The first of the next two statements attaches the callback function 'SET_DEF' to the GotFocus event in the Fahrenheit edit field. It also specifies that when APL runs the callback, it should supply the character vector 'TEMP.F2C' to SET_DEF as its left argument. 'TEMP.F2C' is of course the name of the Button which we want to make the Default one. The second statement is identical, except that it instructs APL to supply the name of the Centigrade to Fahrenheit Button 'TEMP.C2F'

```
'TEMP.F.onGotFocus ← 'SET_DEF' 'TEMP.F2C'
'TEMP.C.onGotFocus ← 'SET_DEF' 'TEMP.C2F'
```

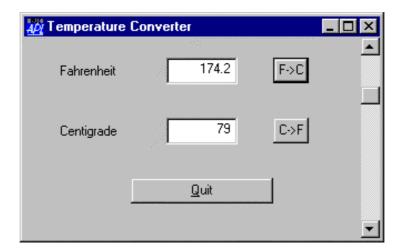

Where the callback 'SET_DEF' is defined as ...

Now let's test the application again. Try typing numbers in both fields and pressing enter each time.

Introducing a ScrollBar

Another way to improve the application would be to allow the user to input using a slider or scrollbar. Let's create one called 'TEMP.S' ...

```
SCR←'Scroll' ('Range' 101)('Event' 'Scroll' 'C2F')
'TEMP.S' □WC SCR
```



The range of a scrollbar goes from 1 to the value of the Range property. Setting Range to 101 will give us a range of 1-101. You will see in a moment why we need to do this. The Scroll event will be generated whenever the user moves the scrollbar. We have associated it with the callback function 'C2F' which we will define as follows:

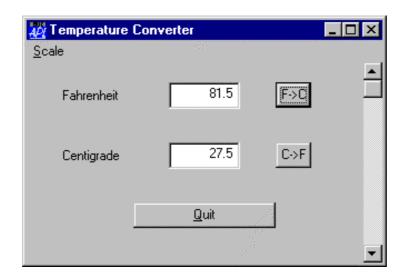
```
V C2F MSG
[1] A Callback for Centigrade input via scrollbar
[2] TEMP.C.Value+101-4>MSG
[3] TEMP.F.Value+32+TEMP.C.Value÷5÷9

▼
```

The Event message MSG contains information about the Scroll event. Its 4th element contains the requested thumb position. As we want to go from 0 at the top, to 100 at the bottom, we need to subtract this value from 101. This is done in line 2 of the function. C2F[3] calculates the corresponding Fahrenheit value.

Try moving the scrollbar and see what happens ...

Adding a Menu


It would also be helpful if you could use the scrollbar to calculate in the reverse direction, from Fahrenheit to Centigrade. Let's add this facility, and give you the ability to choose to which scale the scrollbar applies through a menu.

To create a menu structure in a bar along the top of a Form (as opposed to a *floating* or *pop-up* menu) we first need to create a MenuBar object. This type of object has very few properties, and we need only specify its name, 'TEMP.MB'.

```
'TEMP.MB' □WC 'MenuBar'
```

Notice that, at this stage, there is no change in the appearance of the Form. Then we can add a menu with the Caption 'Scale'. The name of the menu is 'TEMP.MB.M'. Adding the first menu causes the MenuBar to become visible.

Note that the ampersand (&) allows the user to select the menu quickly by pressing "Alt+S".

Now we can add the two options to the menu. Note that the MenuBar and Menu objects do not represent final choices, they merely specify a path to a choice which is represented by the MenuItem object. When either of these is chosen, we want to execute a callback function that will make the necessary changes to the scrollbar. The statements to create each of these MenuItems are broken into 3 only to fit them onto the page.

First we create the Centigrade MenuItem ...

```
C←'MenuItem' '&Centigrade'
C,←('Checked' 1)('Event' 'Select' 'SET_C')
'TEMP.MB.M.C' □WC C
```

Setting the Checked property to 1 will cause a tick mark to appear against this option, indicating that it is the current one in force.

Then the Fahrenheit MenuItem ...

```
F÷'MenuItem' '&Fahrenheit'
F,÷('Checked' 0)('Event' 'Select' 'SET_F')
'TEMP.MB.M.F' □WC F
```

Notice that as the default value of Checked is 0, we didn't really have to set it explicitly for Fahrenheit. Nevertheless, it will do no harm to do so, and improves clarity.

The SET_C callback function is defined as follows:

```
▼ SET_C

[1] A Sets the scrollbar to work in Centigrade

[2] TEMP.S.Range'←101

[3] TEMP.S.onScroll←'C2F'

[4] TEMP.MB.M.C.Checked←1

[5] TEMP.MB.M.F.Checked←0
```

Line [2] simply sets the Range property of the scrollbar to be 101, and line [3] makes C2F the callback function when the scrollbar is moved. Lines [4] and [5] ensure that the tick mark is set on the chosen option.

The SET_F function is very similar ...

```
V SET_F
[1] A Sets the scrollbar to work in Fahrenheit
[2] TEMP.S.Range+213
[3] TEMP.S.onScroll+'F2C'
[4] TEMP.MB.M.F.Checked ← 1
[5] TEMP.MB.M.C.Checked ← 0
```

and of course we need F2C to make the scrollbar work in Fahrenheit.

```
∇ F2C Msg;C;F
[1] A Callback for Fahrenheit input via scrollbar
[2] TEMP.F.Value+213-4>Msg
[3] TEMP.C.Value+(TEMP.F.Value-32)×5÷9
∇
```

Running from Desktop

Now that we have a final working application, it would be nice to add it as a shortcut, so that the user can run it from the Start Menu or from the Desktop, like any other application.

First we need to define **\B**LX so that the application starts automatically.

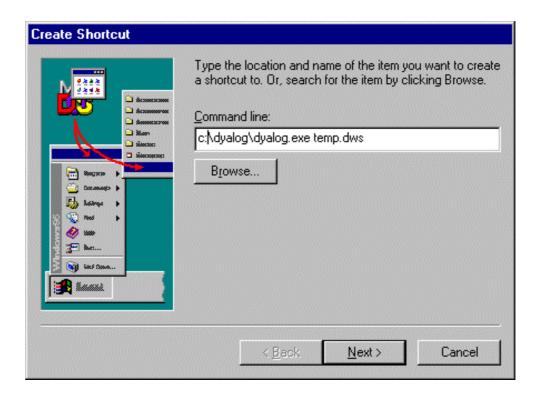
```
□LX ← '□DQ''.'''
```

or, to avoid so many confusing quotes, ...

Next, it would be a good idea to clear the edit fields and ensure that the scrollbar is in its default position :

Then we must) SAVE the workspace ...

```
)SAVE TEMP
TEMP saved ...
```


... and exit APL

)OFF

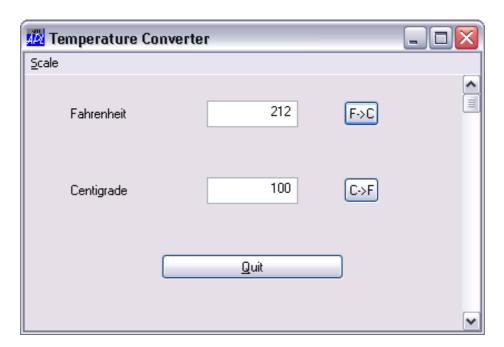
The next step is to add the application to the Desktop. This is done in the normal way, ie.

Right-click on the Desktop and choose "New" followed by "Shortcut".

Type in the appropriate command line.

Select "Next" and give the application a name, then select "Finish".

The resulting icon is shown below. Note that although by default you will get a standard Dyalog APL icon, you could of course select another one from elsewhere on your system.

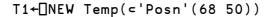

Clicking on this icon will start your application. Notice that the APL Session Window will NOT appear at any stage unless there is an error in your code. All the user will see is your "Temperature Converter" dialog box.

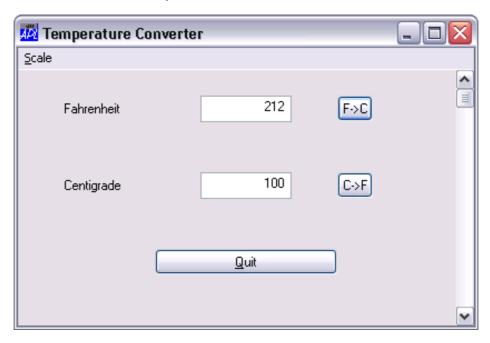
Using □NEW instead of □WC

From Version 11 onwards, it is possible to use **NEW** to create Instances of the built-in GUI Classes. The following function illustrates this approach using the Temperature Converter example described previously.

```
TempConv;TITLE;TEMP
[1]
       TITLE←'Temperature Converter'
       TEMP←□NEW'Form'(('Caption'TITLE)('Posn'(10 10))
('Size'(30 40)))
[2]
[3]
[4]
       TEMP.(MB←□NEW⊂'MenuBar')
[5]
[6]
       TEMP.MB.(M←□NEW'Menu'(,c'Caption' '&Scale'))
       TEMP.MB.M.(C←□NEW'MenuItem' (('Caption' '&Centigrade')('Checked' 1)))
       TEMP.MB.M.(F←□NEW'MenuItem
[7]
                 (,c('Caption' '&Fahrenheit')))
[8]
[9]
       TEMP.(LF←□NEW'Label'(('Caption' 'Fahrenheit')
                             ('Posn'(10 10))))
[10]
       TEMP.(F←□NEW'Edit'(('Posn'(10 40))('Size'(<del>0</del> 20))
                           ('FieldType' 'Numeric')))
[11]
[12]
       TEMP.(LC← NEW'Label'(('Caption' 'Centigrade')
       Γ13 ]
[14]
       TEMP.(F2C←□NEW'Button'(('Caption' 'F->C')
('Posn'(10 70))('Default' 1)))
[15]
       [16]
[17]
                             ('Cancel' 1)))
[18]
[19]
       TEMP.(S←□NEW'Scroll'(c('Range' 101)))
[20]
[21]
       TEMP.MB.M.C.onSelect←'SET_C'
[22]
       TEMP.MB.M.F.onSelect←'SET_F'
[23]
       TEMP.F2C.onSelect←'f2c'
       TEMP.F.onGotFocus+'SET_DEF'
Γ24<sub>1</sub>
       TEMP.C2F.onSelect←'c2f<sup>T</sup>
[25]
       TEMP.C.onGotFocus←'SET_DEF'
[26]
       TEMP.onClose←'QUIT'
[27]
       TEMP.Q.onSelect←'QUIT'
[28]
       TEMP.S.onScroll+'c2f scroll'
[29]
[30]
[31]
       □DQ'TEMP'
```

For brevity, only a couple of the callback functions are shown here.




Temperature Converter Class

You may create user-defined Classes based upon Dyalog GUI objects as illustrated by the Temperature Converter Class which is listed overleaf.

To base a Class on a Dyalog GUI object, you specify the *name* of the object as its Base Class. For example, the Temperature Converter is based upon a Form:

Being based upon a top-level GUI object, the Temperature Converter may be used as follows:

Temperature Converter Example

```
:Class Temp: 'Form'

∇ Make pv; TITLE

       :Access Public
       TITLE←'Temperature Converter'
       :Implements Constructor :Base (c'Caption' TITLE),pv,
                                           <('Size' (30 40))</pre>
       MB←□NEW⊂'MenuBar'
       MB. (M← NEW 'Menu'(, < 'Caption' '&Scale'))
       MB.M.(C←□NEW'MenuItem'(('Caption' '&Centigrade') ('Checked' 1)))
       MB.M.(F←□NEW'MenuItem'(,<('Caption' '&Fahrenheit')))
LF←□NEW'Label'(('Caption' 'Fahrenheit')
                          ('Posn'(10 10)))
       F←□NEW'Edit'(('Posn'(10 40))('Size'(<del>0</del> 20))
                                       'Numeric'))
                       ('FieldType'
       LC+ NEW Label (('Caption' 'Centigrade')
                          ('Posn'(40 10)))
       C+□NEW'Edit'(('Posn'(40 40))('Size'(0 20))
('FieldType' 'Numeric'))
       F2C← NEW Button (('Caption' 'F->C')('Posn'(10 70))
       ('Default' 1))
C2F←□NEW'Button'(('Caption' 'C->F')('Posn'(40 70)))
Q+□NEW'Button'(('Caption' '&Quit')('Posn'(70 30))
                          (ˈSizeˈ(& 40))(ˈCancelˈ 1))
       S←□NEW'Scroll'(c('Range'
                                     101))
       MB.M.C.onSelect←'SET_C
       MB.M.F.onSelect←'SET
       F2C.onSelect←'f2c'
       F.onGotFocus←'SET_DEF'
C2F.onSelect←'c2f'
       C.onGotFocus←'SET DEF'
       onClose←'QUIT'
       Q.onSelect←'QUIT'
       S.onScroll+'c2f_scroll'
    ⊽ f2c
       C.Value+(F.Value-32)×5÷9
    ∇ c2f
       F. Value + 32 + C. Value × 9 ÷ 5
    ∇ c2f scroll MSG
       A Callback for Centigrade input via scrollbar
       C.Value←101-4>MSG
       c2f
    ⊽
```

```
∇ f2c_scroll Msg
      A Callback for Fahrenheit input via scrollbar
      F.Value←213-4>Msg
      f2c
    ⊽
    ⊽ Quit
      Close
    ⊽

∇ SET_DEF MSG

      (>MSG).Default←1
    ▽ SET C
      A Sets the scrollbar to work in Centigrade
      S.Range←101
      S.onScroll+'c2f scroll'
      MB.M.C.Checked←1
      MB.M.F.Checked←0
    ⊽

∇ SET_F

      A Sets the scrollbar to work in Fahrenheit
      S.Range+213
      S.onScroll+'f2c_scroll'
      MB.M.F.Checked←1
      MB.M.C.Checked←0
:EndClass A Temp
```

Notice that the :Implements Constructor statement of its Constructor Make:

```
:Implements Constructor :Base (<'Caption' TITLE),pv,
<('Size' (30 40))
```

passes on the application-specific property list (pv) given as its argument, but (in this case) specifies Caption and Size as well. The order in which the properties are specified in the :Base call ensures that the former will act as a default (and be overriden by an application-specific Caption requested in pv), whereas the specied Size of (30 40) will override whatever value of Size is requested by the host application in pv.

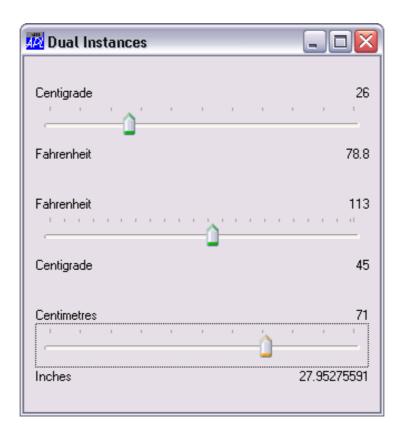
Other Instances can co-exist with the first:

```
T2←□NEW Temp(('Caption' 'My Application')
('Posn'(10 10))
```

Dual Class Example

The Dual Class example is based upon the example used to illustrate how you may build an ActiveX Control in Dyalog APL (see Chapter 13), but re-engineered as a internal Dyalog APL Class. The full listing of the Dual Class script is provided overleaf.

This version of Dual is based upon a SubForm:


```
:Class Dual: 'SubForm'
```

The Dual Control requires a GUI parent but several Instances can co-exist, quite independently, in the same parent.

For example, function RUN creates a Form and 3 Instances of Dual; one to convert Centigrade to Fahrenheit, one to convert Fahrenheit to Centigrade, and the third to convert centimetres to inches.

```
∇ RUN; F; D1PROPS; D2PROPS; D3PROPS

[1]
[2]
     F+□NEW'Form'(('Caption' 'Dual Instances')
('Coord' 'Pixel')('Size'(320 320)))
[3]
[4]
     D1PROPS+('Caption1' 'Centigrade')
           ('Caption2' 'Fahrenheit')
     D1PROPS, +('Intercept' 32)('Gradient'(9÷5))
[5]
     [6]
[7]
[8]
     [9]
[10]
[11]
     [12]
[13]
[14]
                   ('Size'(100 300)),D3PROPS)
[15]
     □DQ'F'
[16]
```


Dual's Constructor Make first splits its constructor arguments into those that apply to the Dual Class itself, and those that apply to the SubForm. Its: Implements Constructor statement then passes these on to the Base Constructor, together with an appropriate setting for EdgeStyle.

```
:Implements Constructor :Base BaseArgs,
c'EdgeStyle' 'Dialog'
```

Dual Class Example

```
:Class Dual: 'SubForm'
    :Include GUITools
    :Field Private _Caption1←''
:Field Private _Caption2←''
:Field Private _Value1←0
:Field Private _Value2←0
:Field Private _Range←0
    :Field Private _Intercept←0
    :Field Private _Gradient←1
    :Field Private _Height←40

∇ Create args; H; W; POS; SH; CH; Y1; Y2; BaseArgs; MyArgs;

                     Defaults
       :Access Public
       MyArgs BaseArgs←SplitNV args
       :Implements Constructor :Base BaseArgs,
                                           c'EdgeStyle' 'Dialog'
       ExecNV_ MyArgs A Set Flds named _PropertyName MyArgs
       Coord←<sup>T</sup>Pixel
       H W←Size
       POS \leftarrow 2 \uparrow [0.5 \times 0] (H-Height)
       CH←⊃GetTextSize'W'
       'Slider'∏WC'TrackBar'POS('Size'_Height W)
       Slider.(Limits AutoConf)←_Range 0
       Slider.(TickSpacing TickAlign)←10 'Top'
Slider.onThumbDrag←'ChangeValue'
      CalcValue2
        Value2_'□WC'Text'($_Value2)(Y2,W)('HAlign' 2)
('AutoConf' 0)
       onConfigure←'Configure'
    :Property Caption1, Caption2
    :Access Public
         ⊽ R←Get arg
            R←(arg.Name, '_') □WG'Text'

∇ Set arg

            (arg.Name, '_') □WS'Text'arg.NewValue
    :EndProperty
```

```
:Property Value1
:Access Public
    ⊽ R←Get
      R←_Value1
    ⊽ Set arg
      □NQ'Slider' 'Scroll' 0 arg.NewValue
:EndProperty
:Property Intercept, Gradient, Range, Height, Value2
:Access Public
    ∇ R←Get arg
R←⊈'_',arg.Name
:EndProperty
∇ CalcValue2
  _Value2←_Intercept+_Gradient×_Value1

∇ ChangeValue MSG

  A Callback for ThumbDrag and Scroll
   Value1←⊃<sup>-</sup>1↑MSG
  CalcValue2
  Value1_.Text←₹_Value1
  Value2_.Text← a_Value2

∇ Configure MSG;H;W;POS;CH;Y1;Y2

  2 NQ MSG
  H W←Size
  POS \leftarrow 2 \uparrow [0.5 \times (H-Height)]
  CH←⊃GetTextSize'W
  Slider.(Posn Size)←POS(_Height W)
Y1←POS[1]-CH+1
  Y2←POS[1]+_Height+1
  Caption1_.Points←1 2ρΥ1,0
Caption2_.Points←1 2ρΥ2,0
  Value1_.Points←1 2pY1,W
  Value1_.Points←1 2ρY2,W
```

:EndClass A Dual

CHAPTER 3

Graphics

Introduction

Graphical output is performed using the following objects:

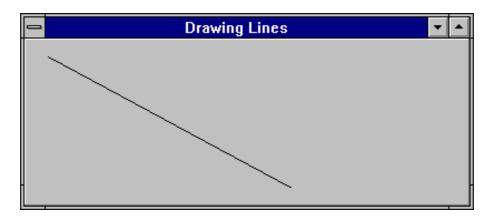
Circle Draws circles, arcs and pie-charts

Ellipse Draws ellipses

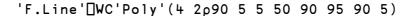
Image Displays or prints bitmaps and icons
Marker Draws one or more sets of polymarkers
Poly Draws one or more sets of polylines

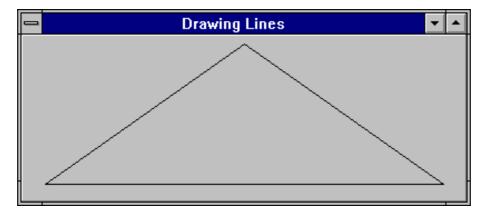
Text Displays or prints text Rect Draws rectangles

These graphical objects can be drawn in (i.e. be the children of) a wide range of other objects including a Form, Static, Printer and Bitmap.


Additional graphical resources are provided by the following objects. These are unusual in that they are not visible except when referenced as the property of another object:

Bitmap Provides a Windows bitmap
Cursor Provides a non-standard cursor
Icon Provides a Windows icon
MetaFile Provides a Windows Metafile


Graphical objects are created, like any other object, using **WC** and have properties that can be changed using **WS** and queried using **WG**. Graphical objects also generate certain events.


Drawing Lines

To draw a line you use the Poly object. The following example draws a line in a Form from the point (y=10, x=5) to the point (y=90, x=60):

In the above example, the points are specified as a 2-element nested vector containing y-coordinates and x-coordinates respectively. You can also use a 2-column matrix, e.g.

Notice that because the second example **replaced** the object F.Line, the original line drawn in the first example has been erased.

In common with the position and size of other GUI objects, y-coordinates precede x-coordinates. Graphical software typically uses (x,y) rather than (y,x) but the latter is consistent with the order in which coordinates are specified and reported for all other objects and events. The Dyalog APL GUI support allows you to freely mix graphical objects with other GUI components (for example, you can use the graphical Text object in place of a Label) and this (y,x) consistency serves to avoid confusion.

When a graphical object in a screen object is erased its parent is restored to the appearance that it had before that graphical object was created. Thus:

first draws a line and then removes it. The following expression clears all graphical objects (and any other non-graphical ones too) from a parent object 'F':

Similarly, objects automatically disappear when a function in which they are localised exits.

Erasing graphical objects that have been drawn on a Printer has no effect. Once drawn they cannot be undrawn.

Drawing in a Bitmap

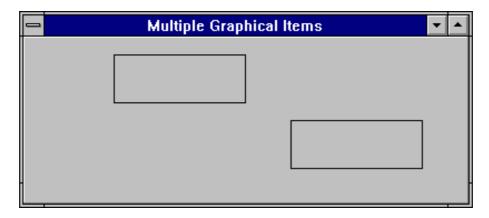
A bitmap is an invisible resource (in effect, an area of memory) that is only displayed on the screen when it is referenced by another object. Any of the seven graphical objects (Circle, Ellipse, Image, Marker, Poly, Text and Rect) can be drawn in a bitmap (represented by a Bitmap object), using exactly the same $\square WC$ syntax as if you were drawing in a Form, Static or Printer. However, drawing in a Bitmap is, like drawing on a Printer, an operation that cannot be "undone".

This facility allows you to construct a picture using lines, circles, text etc. and then later display it or save it as a bitmap.

Multiple Graphical Items

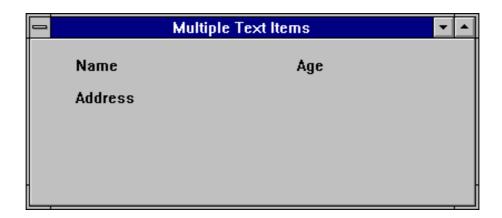
All graphical output objects (Circle, Ellipse, Image, Marker, Poly, Text and Rect) permit nested arguments so that you can draw several items with a single object. This feature has several advantages. Firstly, it allows you to treat related graphical items as a single object with a single name. This reduces the potential number of objects in existence and reduces the number of program statements needed to draw them. For example, sets of tick marks or grid lines do not have to be drawn separately, but can be represented by one object. Furthermore, because a set of lines can be embodied in a single object, you can erase them, replace them or drag/drop them as a unit. A further consideration is performance. A set of graphical items represented by a single object will normally be drawn faster than if each item was represented by separate objects.

For example, the following statements draw two separate rectangles; a red one at (y=10, x=20) and a blue one at (y=50, x=60). Both rectangles are size (30,30).


```
RED BLUE ← (255 0 0)(0 0 255)

'F.R1' □WC 'Rect' (10 20)(30 30) ('FCol' RED)
'F.R2' □WC 'Rect' (50 60)(30 30) ('FCol' BLUE)
```

The next statement achieves the same result, but uses only one object:


```
'F.R' | WC 'Rect' ((10 50)(20 60)) (30 30)
('FCol' RED BLUE)
```

The rectangles drawn by both these sets of statements are shown below (blue and red have been replaced by black for clarity).

The capability to specify more than one graphical item as a single object is particularly useful with the Text object as it allows you to display or print several text items (at different positions and in different colours if you wish) in a single statement. For example, the following expressions display a set of "labels" in a Form 'F1':

```
LAB←'Name' 'Age' 'Address'
POS←3 2ρ10 10 10 60 30 10
'F1.LABS' □WC 'Text' LAB POS
```


Unnamed Graphical Objects

When using the seven graphical output objects, you can optionally omit the final part of the name. For example, the following expression is valid:

```
'F.' □WC 'Poly' (2 2p10 5 50 10)
```

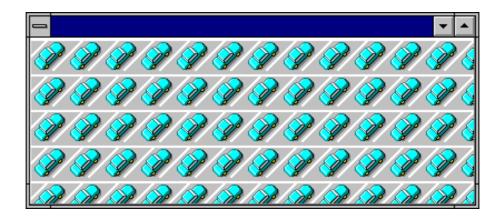
When you create a **named** object, all of the properties pertaining to that object are stored internally in your workspace. A polyline consisting of a large number of points thus takes up a significant amount of memory. However, this is necessary because the APL interpreter needs the information in order to redraw the object when another window is placed over it and then moved away again (exposure) or when the user resizes the Form in which it is displayed.

When you create an **unnamed** graphical object, the object is drawn, but its properties are **not** remembered internally, thus conserving workspace. This has two consequences. Firstly, you cannot subsequently modify or query the object's properties; you must name an object if you are ever going to refer to it again. Secondly, the object cannot automatically be redrawn (by APL) when it is exposed or resized. Instead, you must control this yourself using the Expose event.

Unnamed graphical objects are useful in the following circumstances:

- For output to a Printer.
- When you are very short of workspace.
- When you are sure that the window you are drawing in will not need to be redrawn, for example, when you are working "full-screen".
- For drawing in a Bitmap or a Metafile.
- For creating bitmaps in an ImageList

Bitmaps and Icons


Bitmaps and icons are implemented as separate objects that you can create and destroy. Once you have created such an object you can reference it as many times as you wish. For example, you can use the same bitmap in several Buttons or associate the same icon with several Forms.

The Bitmap and Icon objects can be created in one of two ways. They are either loaded from an existing file or they are defined from APL arrays.

The files concerned must be in the appropriate Windows format for the object (.BMP or .ICO files) which can be edited by a standard Windows utility such as Paintbrush. The following example creates a Bitmap object from the CARS.BMP bitmap file which is supplied in the WS sub-directory:

```
'CARS' □WC 'Bitmap' 'C:\DYALOG101\WS\CARS'
```

Then you can use the Bitmap to fill the background of a Form by:

The "1" in the expression specifies that the Bitmap is to be used to "tile" the background of the Form. The result is shown in the illustration below. You can also position the Bitmap in the top-left (0) or centre (3) of the Form, or even have the Bitmap scaled automatically (2) to fit exactly in the Form. These settings are useful for displaying pictures. You can explore these facilities using the BMVIEW function in the UTIL workspace.

Instead of creating Bitmap and Icon objects from file, you can define them using APL arrays. These arrays specify the individual pixels that make up the picture or shape of the object in question.

There are two ways to define a Bitmap object from APL arrays. The first method, which is limited to colour palettes of 16 or 256 colours is to supply two arrays; one containing the colour indices for every pixel in the bitmap, and one containing the colour map. The colour map specifies the colours (in terms of their red, green and blue components) corresponding to the indices in the first array. For example, the following expressions create a 32 x 32 Bitmap from the arrays PIX and CM:

The reason that this method is restricted to 256 colours is that the CMap array containing the colour map is, of necessity, the same size as the colour palette. Even for a relatively modest 16-bit colour palette, the size of the array would be 65536 x 3.

The second method, which applies to all sizes of colour palette, is to use a single array that represents each pixel by a number that is an encoding of the red, green and blue components. The formula used to calculate each pixel value is:

```
256⊥RED GREEN BLUE
```

where RED, GREEN and BLUE are integers in the range 0-255.

Thus the example above can be achieved using a single array CBITS as follows:

```
CBITS←(256±\QCMAP)[□IO+PIX]
'BM' □WC 'Bitmap' ('CBits' CBITS)
```

You can build APL arrays representing bitmaps using the BMED function in the BMED workspace. You can also load them from file, e.g.

```
'BM' □WC 'Bitmap' 'C:\WINDOWS\CARS'
PIX CM ← 'BM' □WG 'Bits' 'CMap'
```

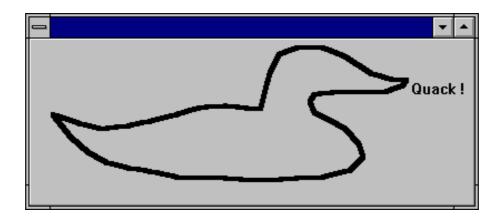
Metafiles

A Windows metafile is a mechanism for representing a picture as a collection of graphics commands. Once a metafile has been created, the picture that it represents can be drawn repeatedly from it. Metafiles are device-independent, so the picture can be reproduced on different devices. Unlike bitmaps, metafiles can be scaled accurately and are therefore particularly useful for passing graphical information between different applications. Note that some other applications only support *placeable* metafiles. See RealSize property for details.

Creating a Metafile Object

In Dyalog APL, a Windows metafile is represented by the Metafile object. This is created in much the same way as a Bitmap object. That is, you can either make a Metafile object from an existing .WMF file, or you can create an empty one and then draw onto it using Poly, Text and other graphical objects. For example, to create a Metafile object called BFLY from the BUTTRFLY.WMF metafile that comes with Microsoft Office, you can execute the following:

```
'BFLY' □WC 'Metafile' 'c:\msoffice\clipart\buttrfly'
```

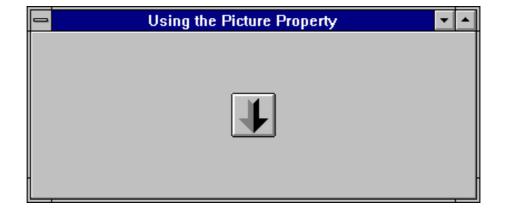

If instead you wanted to create a metafile drawing from scratch, you could do so as follows. Notice that there is no need to assign names to the graphical objects drawn onto the Metafile.

```
'METADUCK' □WC 'Metafile' ''
'METADUCK.' □WC 'Poly' DUCK
'METADUCK.' □WC 'Text' 'Quack' (25 86)
```

Drawing a Metafile Object

A Metafile object is drawn by specifying its name as the Picture property of another object. This causes the Metafile to be drawn in that object and scaled to fit exactly within its boundaries. The following statement causes the Metafile object called METADUCK to be drawn in the Form F 1.

'F1' WC'Form' ('Size' 25 50) ('Picture' 'METADUCK')


Picture Buttons

Picture buttons in *toolbars* are most conveniently represented by ToolButtons in ToolControls (see Chapter 4). Pictures on stand-alone buttons or buttons used in the (superseded) ToolBar object, may be created using Bitmap, Icon and Metafile objects and there are two different methods provided. The first (and the simplest) is to use the Picture property which applies to all 3 types of image,(Bitmap, Icon or Metafile). The second method is to use the BtnPix property. This requires rather more effort, and only draws Bitmaps, and not Icons or Metafiles. However, the BtnPix property gives you total control over the appearance of a Button which the Picture property does not.

Using the Picture Property

The Picture property overlays a Bitmap, Icon or Metafile on top of a standard pushbutton. The following examples use icon files distributed with Visual Basic. If you don't have this product, you can use any other suitable icons, bitmaps or metafiles that you have on your PC. Alternatively, you can create bitmaps using the BMED function in the BMED workspace.

Load a Visual Basic icon:

Notice that (by definition) an icon is 32 x 32 pixels in size. To allow space for the pushbutton borders you have to make the Button at least 40 x 40 pixels. The "3" means put the 'ARROW' in the **centre** of the button.

When you press a Button which has its Picture property set like this, APL/W automatically shifts the overlaid image down and to the right by 1 pixel. This complements the change in appearance of the button borders and achieves a "pressed-in" look. When you release the button, APL shifts the image back again.

The Picture property therefore provides a very simple mechanism for implementing a "tool-button", especially if you already have a bitmap or icon file that you want to use.

However, the Picture property has certain limitations. Firstly, you cannot alter the "pressed-in" look of the Button which is determined automatically for you. You might want the Button to change colour when you press it, and you cannot achieve this with the Picture property. Secondly, the appearance of the Button is unchanged when you make it inactive (by setting its Active property to 0).

Note that if you use the Picture property on Radio or Check buttons, the buttons assume pushbutton appearance although their radio/check behaviour is unaffected.

Using the BtnPix Property

You can obtain **complete** control over the appearance of a Button by using the BtnPix property; however this entails more work on your part.

BtnPix allows you to associate three bitmaps with a Button, i.e.

one for when the Button is in its normal state one for when it is pressed/selected one for when it is inactive

For example, if you have created three Bitmap objects called 'UP', 'DOWN' and 'DEAD', you define the Button as follows:

```
'F.B' □WC 'Button' ('BtnPix' 'UP' 'DOWN' 'DEAD')
```

APL subsequently displays one of the three Bitmap objects according to the state of the Button; i.e. 'UP' for its normal state (State 0), 'DOWN' for its pressed/selected state (State 1) or 'DEAD' when it is inactive (Active 0).

The BtnPix property requires that you use Bitmap objects; it doesn't work for Icons. This is because icons are normally at least partly **transparent**. However, it is very easy to convert an icon file to a Bitmap object. First you create an Icon object from the icon (.ICO) file. Next you read the icon's pattern definition (Bits property) and colour map (CMap property) into the workspace. Then finally, you create a Bitmap from these two arrays.

The following example illustrates how you can make a Button from three Visual Basic icon files. You can also make your own trio of bitmaps using the BTNED function in the BMED workspace.

Load a Visual Basic icon:

```
'T1' DWC 'Icon' 'C:\VB\IconS\TRAFFIC\TRFFC10A'
```

Read its Bits (pattern) and CMap (colour map):

Now define a Bitmap from these variables, (replacing the T1 object):

Now make a second Bitmap:

and a third:

Now define the Button:

What does it look like when inactive?

```
'F.B' □WS 'Active' 0
```

Using Icons

You have seen how icons can be displayed using the Picture property. Other uses of icons are described below.

Firstly, you can associate an icon with a Form or so that the icon is displayed (by Windows) when the Form is minimised. This is done using the IconObj property. For example, the following expressions would associate the UK Flag icon distributed with Visual Basic with the Form 'F1'. This icon would then be displayed when 'F1' is minimised.

```
'FLGUK' □WC 'Icon' 'C:\VB\ICONS\FLAGS\FLGUK' 'F1' □WC 'Form' ('IconObj' 'FLGUK')
```

The IconObj property also applies to the Root object '.'. This defines the icon to be displayed for your **application** as a whole when the user toggles between applications using Alt+Tab. It is used in conjunction with the Caption property which determines the description of your application that is shown alongside the icon, eg.

```
'MYIcon' □WC 'Icon' ...
'.' □WS ('IconObj' 'MYIcon') ('Caption' 'My System')
```

An icon can be displayed using the Image object. This object is used to position one or more Icon objects (or Bitmap objects) in a Form or Static. It can also be used to draw an icon on a Printer. If you make the Image dragable, you will be able to drag/drop the icon. The following example displays a dragable Icon at (10,10) in a Form. It also associates the callback function 'Drop' with the DragDrop event so that this function is called when the user drag/drops the icon.

Notice that ('Dragable' 2) specifies that an object is fully displayed while it is being dragged. The setting ('Dragable' 1) causes only the bounding rectangle around the object to be dragged.

CHAPTER 4

Composite Controls

This chapter describes how to use the ToolControl, CoolBar, TabControl and StatusBar objects.

Several of these objects require the Windows Custom Control Library COMCTL32.DLL, Version 4.72 or higher.

The ToolControl and ToolButton Objects

The ToolControl object is normally used in conjunction with ToolButtons, although it may also act as a parent for other objects, including a MenuBar.

A ToolButton may display a Caption and an Image, although both are optional. Images for individual ToolButtons are not defined one-by-one, but instead are defined by an ImageList which contains a set of bitmaps or icons.

The ImageListObj property of the ToolControl specifies the name of one or more ImageList objects to be used. The ImageIndex properties of each of the ToolButtons specifies which of the images in each ImageList object apply to which of the ToolButtons.

Standard Bitmap Resources

Typically, you will want your ToolControls to provide standard Windows buttons and the easiest way to achive this is to utilise the standard Windows bitmaps that are contained in COMCTL32.DLL. There are three main sets of bitmaps, each of which is provided in two sizes, small (16x16) and large (24 x 24).

Resource number 120 (IDB_STD_SMALL_COLOR) and 121 (IDB_STD_LARGE_COLOR) contain the following set of assorted bitmap images.

Resource number 124 (IDB_VIEW_SMALL_COLOR) and 125 (IDB_VIEW_LARGE_COLOR) contain a set of bitmaps relating to different views of information. These are used, for example in the Windows Explorer tool bar

Resource number 130 (IDB_HIST_SMALL_COLOR) and 131 (IDB_HIST_LARGE_COLOR) contain another useful set of bitmaps

COMCTL32.DLL also contains individual bitmaps in resources 132-134.

Dyalog Bitmap Resources

Another three sets of useful bitmaps are to be found in the DYARES32.DLL file. These bitmaps are used in the Dyalog APL/W Session tool buttons. Note that if you include thse bitmaps in a run-time application, you will have to ship DYARES32.DLL with it.

The *normal* set of bitmaps associated with the Session buttons may be created using the statement:

The bitmaps used when the buttons are *highlighted* may be created using the statement (note that the file name may be elided)

The bitmaps used when the buttons are *inactive* may be created using the statement

Creating ImageLists for ToolButtons

You may use up to three ImageList objects to represent ToolButton images. These will be used to specify the pictures of the ToolButton objects in their normal, highlighted (sometimes termed hot) and inactive states respectively.

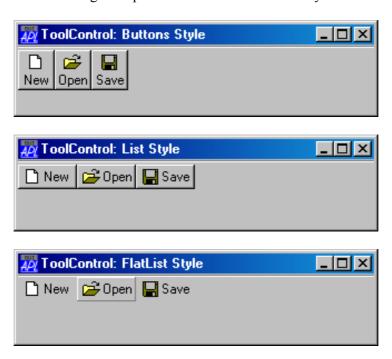
The set of images in each ImageList is then defined by creating unnamed Bitmap or Icon objects as children.

When creating an ImageList, it is a good idea to set its MapCols property to 1. This means that standard button colours used in the bitmaps will automatically be adjusted to take the user's colour preferences into account.

When you create each ToolButton you specify its ImageIndex property, selecting up to three pictures (normal, highlighted and inactive) to be displayed on the button.

If you specify only a single ImageList, the picture on the ToolButton will be the same in all three cases. However, the appearance of the buttons themselves change when the button is highlighted or pressed, and in many situations this may be sufficient behaviour.

The following example illustrates how a simple ToolControl can be constructed using standard Windows bitmaps. Notice that the Masked property of the ImageList is set to 0; this is necessary if the ImageList is to contain bitmaps, as opposed to icons. Secondly, because the bitmaps are in this case size 16 x 16, it is unnecessary to specify the Size property of the ImageList which is, by default, also 16 x 16.



The Style Property

The overall appearance of the ToolButton objects displayed by the ToolControl is defined by the Style property of the ToolControl itself, rather than by properties of individual ToolButtons.

Note that the Style property may only be set when the ToolControl is created using $\square WC$ and may not subsequently be changed using $\square WS$.

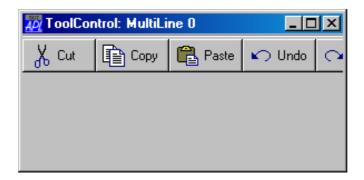
Style may be 'FlatButtons', 'Buttons', 'List' or 'FlatList'. The default Style is of a ToolControl is 'FlatButtons', as is the first example above. The following examples illustrate the other three styles:

The Divider Property

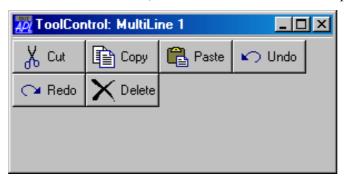
You will notice that, in the above examples, there is a thin groove drawn above the ToolControl. The presence or absence of this groove is controlled by the Divider property whose default is 1. The following picture illustrates the effect of setting Divider to 0.

The MultiLine Property

The MultiLine property specifies whether or not ToolButtons (and other child controls) are arranged in several rows (or columns) when there are more than would otherwise fit.


If MultiLine is 0 (the default), the ToolControl object *clips* its children and the user must resize the Form to bring more objects into view.

Note that you may change MultiLine dynamically, using **DWS**.


```
'F' \| WC'Form' 'ToolControl: MultiLine O'
'F.TB' \| WC'ToolControl'('Style' 'List')

'F.TB.IL' \| WC'ImageList'('Masked' O)('Size' 24 24)
'F.TB.IL.' \| WC'Bitmap'('ComCtl32' 121) A STD_LARGE
'F.TB' \| WS'ImageListObj' 'F.TB.IL'

'F.TB.B1' \| WC'ToolButton' 'Cut'('ImageIndex' 1)
'F.TB.B2' \| WC'ToolButton' 'Copy'('ImageIndex' 2)
'F.TB.B3' \| WC'ToolButton' 'Paste'('ImageIndex' 3)
'F.TB.B4' \| WC'ToolButton' 'Undo'('ImageIndex' 4)
'F.TB.B5' \| WC'ToolButton' 'Redo'('ImageIndex' 5)
'F.TB.B6' \| WC'ToolButton' 'Delete'('ImageIndex' 6)
```


If we set MultiLine to 1, the ToolButtons are instead displayed in several rows:

The Transparent Property

The Transparent property (default 0) specifies whether or not the ToolControl is transparent. Note that Transparent must be set when the object is created using **DWC** and may not subsequently be changed using **DWS**.

If a ToolControl is created with Transparent set to 1, the visual effect is as if the ToolButtons (and other controls) were drawn directly on the parent Form as shown below.

```
'F' | WC'Form' 'ToolControl: Transparent 1)'
'F.BM' | WC'Bitmap' 'C:\WINDOWS\WINLOGO'
'F' | WS'Picture' 'F.BM' 1

'F.TB' | WC'ToolControl'('Style' 'FlatList')('Transparent' 1)
'F.TB.IL' | WC'ImageList'('Masked' 0)('Size' 24 24)
'F.TB.IL.' | WC'Bitmap'('ComCtl32' 121)A STD_LARGE
'F.TB' | WS'ImageListObj' 'F.TB.IL'

'F.TB.B1' | WC'ToolButton' 'New'('ImageIndex' 7)
'F.TB.B2' | WC'ToolButton' 'Open'('ImageIndex' 8)
'F.TB.B3' | WC'ToolButton' 'Save'('ImageIndex' 9)
```


Radio buttons, Check buttons and Separators

The Style property of a ToolButton may be 'Push', 'Check', 'Radio', 'Separator' or 'DropDown'.

Push buttons (the default) are used to generate actions and pop in and out when clicked.

Radio and Check buttons are used to select options and have two states, normal (out) and selected (in). Their State property is 0 when the button is in its normal (unselected state) or 1 when it is selected.

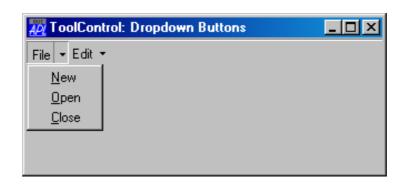
A group of adjacent ToolButtons with Style 'Radio' defines a set in which only one of the ToolButtons may be selected at any one time. The act of selecting one will automatically deselect any other. Note that a group of Radio buttons must be separated from Check buttons or other groups of Radio buttons by ToolButtons of another Style.

Separator buttons are a special case as they have no Caption or picture, but appear as a thin vertical grooves that are used only to separate groups of buttons.

The following example illustrates how two groups of radio buttons are established by inserting a ToolButton with Style 'Separator' between them. This ToolControl could be used to control the appearance of a ListView object. The first group is used to select the view (Large Icon, Small Icon, List or Report), and the second is used to sort the items by Name, Size or Date. In the picture, the user has selected Small Icon View and Sort by Date.

Notice that the appearance of the Separator ToolButton is less obvious when the ToolControl Style is Buttons or List, but the radio grouping effect is the same:


```
'F'□WC'Form' 'ToolControl: ToolButton Styles'('Size' 10 40)
'F.TB'□WC'ToolControl'
'F.TB.IL'□WC'ImageList'('Masked' 0)
'F.TB.IL.'□WC'Bitmap'('ComCt132' 124)A VIEW_SMALL
'F.TB'□WS'ImageListObj' 'F.TB.IL'
'F.TB.B1'□WC'ToolButton' 'Large'
                                       ('ImageIndex' 1)
                                         Style' 'Radio')
'F.TB.B2' □WC'ToolButton' 'Small'
                                         ImageIndex' 2)
                                         Style' 'Radio')
'F.TB.B3'□WC'ToolButton'
                           'List'
                                         ImageIndex' 3)
                                       ('Style' 'Radio')
                                       ('ImageIndex' 4)
'F.TB.B4'□WC'ToolButton' 'Details'
                                       ('Style' 'Radio')
'F.TB.S1'□WC'ToolButton'('Style' 'Separator')
'F.TB.B5'∏WC'ToolButton' 'Name'
                                       ('ImageIndex' 5)
                                       (ˈStyleˈˈRadioˈ)
                                       ('ImageIndex' 6)
'F.TB.B6'□WC'ToolButton' 'Size'
                                       ('Style' 'Radio')
                                       ('ImageIndex' 7)
'F.TB.B7' WC'ToolButton' 'Date'
                                       ('Style' 'Radio')
```

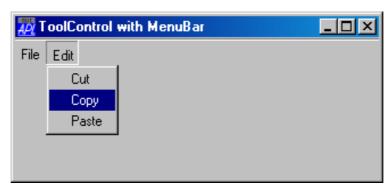

Drop-Down buttons

It is possible to define ToolButtons that display a drop-down menu from which the user may choose an option. This is done by creating a ToolButton with Style 'DropDown'.

A ToolButton with Style 'DropDown' has an associated popup Menu object which is named by its Popup property. There are two cases to consider.

If the ShowDropDown property of the parent ToolControl is 0, clicking the ToolButton causes the popup menu to appear. In this case, the ToolButton itself does not itself generate a Select event; you must rely on the user selecting a MenuItem to specify a particular action.

If the ShowDropDown property of the parent ToolControl is 1, clicking the dropdown button causes the popup menu to appear; clicking the ToolButton itself generates a Select event, but does not display the popup menu.

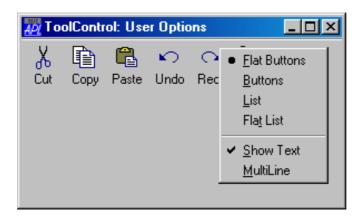


A MenuBar as the child of a ToolControl

As a special case, the ToolControl may contain a Menubar as its **only** child. In this case, Dyalog APL/W causes the menu items to be drawn as buttons, even under Windows 95.

Although nothing is done to prevent it, the use of other objects in a ToolControl containing a MenuBar, is not supported.

:EndWith



Providing User Customisation

It is common to allow the user to switch the appearance of a ToolControl dynamically. This may be done using a pop-up menu. In addition to providing a choice of styles, the user may switch the text captions on and off.

The ShowCaptions property specifies whether or not the captions of ToolButton objects are drawn. Its default value is 1 (draw captions).

ToolButtons drawn without captions occupy much less space and ShowCaptions provides a quick way to turn captions on/off for user customisation.

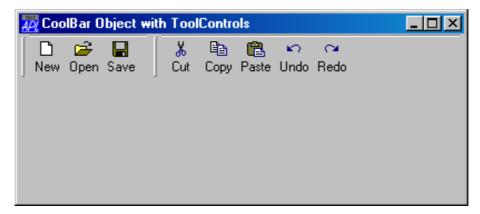
The following functions illustrate how this was achieved.

```
Example
          'F'□WC'Form' 'ToolControl: User Options'
[1]
          'F.TB'□WC'ToolControl
[2]
          'F.TB'□WS'Event' 'MouseDown' 'TC_POPUP'
[3]
[4]
[5]
          'F.TB.IL'□WC'ImageList'('Masked' 0)('Size' 24 24)
          'F.TB.IL.' | WC'Bitmap'('ComCtl32' 121)A STD_LARGE 'F.TB' | WS'ImageListObj' 'F.TB.IL'
[6]
[7]
[8]
                                             'Cut'('ImageIndex' 1)
'Copy'('ImageIndex' 2)
'Paste'('ImageIndex' 3)
'Undo'('ImageIndex' 4)
'Redo'('ImageIndex' 5)
[9]
          'F.TB.B1'□WC'ToolButton'
[10]
          'F.TB.B2'□WC'ToolButton'
          'F.TB.B3'□WC'ToolButton'
[11]
          'F.TB.B4' WC'ToolButton'
'F.TB.B5' WC'ToolButton'
[12]
[13]
          'F.TB.B6'□WC'ToolButton'
[14]
                                             'Delete'('ImageIndex' 6)
```

```
▼ TC_POPUP MSG;popup;TC;STYLE;SHOW;MULTI;OPTION
[1]
        A Popup menu on ToolControl
[2]
        :If (2≠5>MSG) A Right mouse button ?
[3]
             :Return
[4]
        :EndIf
[5]
        TC←'#.',⊃MSG
[6]
        STYLE SHOW MULTI←TC □WG'Style' 'ShowCaptions' 'MultiLine'
[7]
[8]
[9]
        :With 'popup'□WC'Menu'
             'FlatButtons'□WC'MenuItem' '&Flat Buttons'
('Style' 'Radio')
'Buttons'□WC'MenuItem' '&Buttons'
[10]
[11]
                              ('Style' 'Radio')
             'List' WC'MenuItem' '&List'('Style' 'Radio')
[12]
             'FlatList'□WC'MenuItem' 'Fla&t List'
____('Style' 'Radio')
[13]
             STYLE DWS'Checked' 1
[14]
             'sep'□WC'Separator'
[15]
             'ShowCaptions'□WC'MenuItem' '&Show Text'
[16]
             ('Checked'SHOW)
'MultiLine' WC'MenuItem' '&MultiLine'
[17]
                                ('Checked'MULTI)
[18]
             ('MenuItem'∏WN'')∏WS"⊂'Event' 'Select' 1
[19]
[20]
[21]
             :If O=ρMSG←□DQ''
[22]
                 :Return
[23]
             :EndIf
[24]
[25]
             :Select OPTION←>MSG
             :CaseList 'FlatButtons' 'Buttons' 'List'
[26]
                         'FlatList
                 TC □WS'Style'OPTION
[27]
[28]
             :Else
[29]
                 TC □WS OPTION(~TC □WG OPTION)
[30]
             :EndSelect
[31]
[32]
        :EndWith
```

The CoolBar and CoolBand Objects

A CoolBar contains one or more bands (CoolBands). Each band can have any combination of a gripper bar, a bitmap, a text label, and a single child object.


Using the gripper bars, the user may drag bands from one row to another, resize bands in the same row, and maximise or minimise bands in a row. The CoolBar therefore gives the user a degree of control over the layout of the controls that it contains.

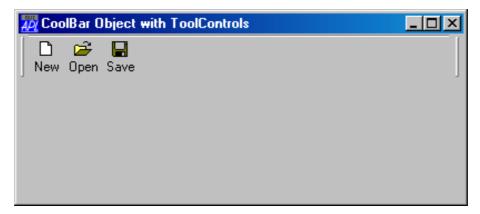
A CoolBand may not contain more than one child object, but that child object may itself be a container such as a ToolControl or a SubForm.

The following example illustrates a CoolBar containing two CoolBands, each of which itself contains a ToolControl.

The user may move band 2 into row 1 by dragging the gripper bar:

CoolBar: FixedOrder Property

FixedOrder is a property of the CoolBar and specifies whether or not the CoolBar displays CoolBands in the same order. If FixedOrder is 1, the user may move bands which have gripper bars to different rows, but the band order is static. The default is 0.


CoolBand: GripperMode Property

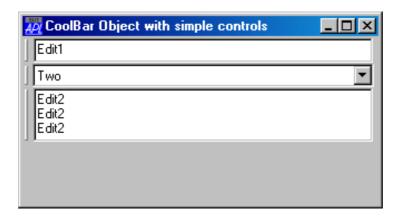
GripperMode is a property of a CoolBand and specifies whether or not the CoolBand has a gripper bar which is used to reposition and resize the CoolBand within its parent CoolBar. GripperMode is a character vector with the value 'Always' (the default), 'Never' or 'Auto'. If GripperMode is 'Always', the CoolBand displays a gripper bar even if it is the only CoolBand in the CoolBar. If GripperMode is 'Never', the CoolBand does not have a gripper bar and may not be directly repositioned or resized by the user. If GripperMode is 'Auto', the CoolBand displays a gripper bar only if there are other CoolBands in the same CoolBar.

CoolBar: DoubleClickToggle Property

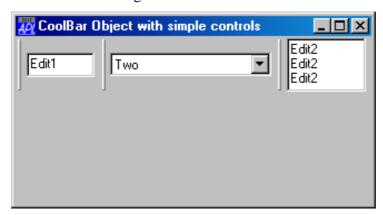
If it has a gripper bar, the user may maximise one of the bands in a row, causing the other bands to be minimised. The action required to do this is defined by the DblClickToggle property which is a property of the CoolBar.

If DblClickToggle is 0 (the default), the user must single-click the gripper bar. If DblClickToggle is 1, the user must double-click the gripper bar. These actions toggle a child CoolBand between its maximised and minimised state. The following picture shows the first CoolBand maximised.

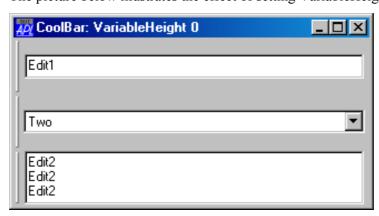
The next picture shows the second CoolBand maximised.

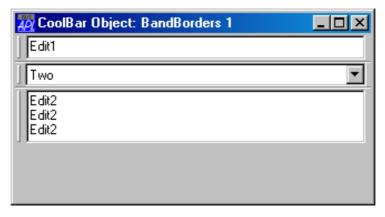

CoolBar: VariableHeight/BandBorders Properties

These two properties affect the appearance of the CoolBar.

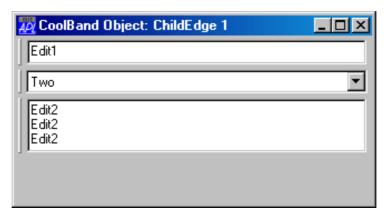

The VariableHeight property specifies whether or not the CoolBar displays bands in different rows at the minimum required height (the default), or all the same height.

The BandBorders property specifies whether or not narrow lines are drawn to separate adjacent bands. The default is 0 (no lines).


The following example uses simple controls (as opposed to container controls) as children of the CoolBands and illustrate the effect of these properties on the appearance of the CoolBar.


If the CoolBands are arranged in the same row, the height of the row expands to accommodate the largest one as shown below.

The picture below illustrates the effect of setting VariableHeight to 0.


The picture below shows the affect on appearance of setting BandBorders to 1.

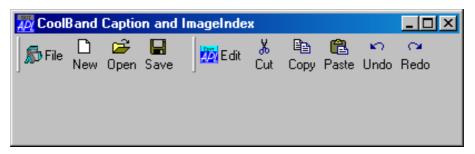
CoolBand: ChildEdge Property

ChildEdge is a property of a CoolBand and specifies whether or not the CoolBand leaves space above and below the object that it contains.

If the ChildEdge property of each CoolBand had been set to 1 in the above example, then the result would show wider borders between each band.

CoolBand: Caption and ImageIndex Properties

The Caption and ImageIndex properties of a CoolBand are used to display an optional text string and picture in the CoolBand.


The picture is defined by an image in an ImageList object whose name is referenced by the ImageListObj property of the parent CoolBar. The following example illustrates how this is done.

```
'F' WC'Form' 'CoolBand Caption and ImageIndex'
'F.IL' WC'ImageList'('Masked' 0)('MapCols' 1)
'F.IL.' WC'Bitmap'('ComCtl32' 120)A STD_SMALL

'F.CB' WC'CoolBar'('ImageListObj' 'F.CB.IL')
'F.CB.IL' WC'ImageList'('Masked' 1)('MapCols' 1)
'F.CB.IL.' WC'Icon'('' 'aplicon')
'F.CB.IL.' WC'Icon'('' 'editicon')

:With 'F.CB.C1' WC'CoolBand' 'File'('ImageIndex' 1)
    'TB' WC'ToolControl'('ImageListObj' '#.F.IL')('Divider' 0)
    'TB.B1' WC'ToolButton' 'New'('ImageIndex' 7)
    'TB.B2' WC'ToolButton' 'Open'('ImageIndex' 8)
    'TB.B3' WC'ToolButton' 'Save'('ImageIndex' 9)
:EndWith

:With 'F.CB.C2' WC'CoolBand' 'Edit'('ImageIndex' 2)
    'TB' WC'ToolControl'('ImageListObj' '#.F.IL')('Divider' 0)
'TB.B1' WC'ToolButton' 'Cut'('ImageIndex' 1)
'TB.B2' WC'ToolButton' 'Copy'('ImageIndex' 2)
'TB.B3' WC'ToolButton' 'Paste'('ImageIndex' 3)
'TB.B4' WC'ToolButton' 'Paste'('ImageIndex' 4)
'TB.B5' WC'ToolButton' 'Redo'('ImageIndex' 4)
'TB.B5' WC'ToolButton' 'Redo'('ImageIndex' 5)
:EndWith
```


Not that the Caption and image are displayed when the CoolBand is minimised as shown below:

CoolBand: Size, Posn, NewLine, Index Properties

The Size property of a CoolBand is partially read-only and may only be used to specify its width; because the height of a CoolBand is determined by its contents. Furthermore, the Size property may only be specified when the CoolBand is created using DWC.

The position of a Cool Band within a CoolBar is determined by its Index and NewLine properties, and by the position and size of preceding CoolBand objects in the same CoolBar. The Posn property is read-only.

The Index property specifies the position of a CoolBand within its parent CoolBar, relative to other CoolBands and is \(\square\) IO dependant. Initially, the value of Index is determined by the order in which the CoolBands are created. You may re-order the CoolBands within a CoolBar by changing its Index property with \(\square\) WS.

The NewLine property specifies whether or not the CoolBand occupies the same row as an existing CoolBand, or is displayed on a new line within its CoolBar parent.

The value of NewLine in the first CoolBand in a CoolBar is always \(\begin{aligned} \text{IO}, even if you specify it to be 0. You may move a CoolBand to the previous or next row by changing its NewLine property (using \(\begin{aligned} \begin{aligned} \text{WS} \end{aligned}) from 1 to 0, or from 0 to 1 respectively.

If you wish to remember the user's chosen layout when your application terminates, you must store the values of Index, Size and NewLine for each of the CoolBands. When your application is next started, you must re-create the CoolBands with the same values of these properties.

CoolBands with SubForms

The CoolBand object itself may contain only a single child object. However, if that child is a SubForm containing other objects, the CoolBand can appear to manage a group of objects. A similar effect can be obtained using a ToolBar or ToolControl.

The following example illustrates this technique. Note that the SubForms are disguised by setting their EdgeStyle and BCol properties. In addition, their AutoConf properties are set to 0 to prevent resizing of the child controls when the CoolBands are resized.

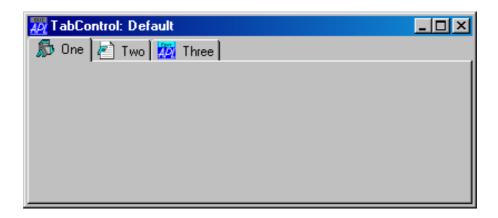
The TabControl and TabButton Objects

The TabControl object provides access to the standard Windows NT tab control.

The standard tab control is analogous to a set of dividers in a notebook and allows you to define a set of *pages* that occupy the same area of a window or dialog box. Each page consists of a set of information or a group of controls that the application displays when the user selects the corresponding tab.

A special type of tab control displays tabs that look like buttons. For example, the Windows 98 taskbar is such a tab control.

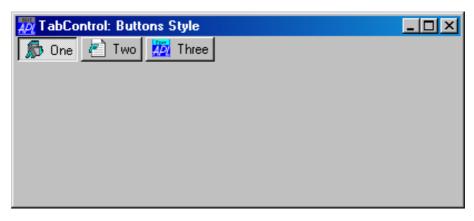
To implement a multiple page tabbed dialog, illustrated below, you should create a Form, then a TabControl with Style 'Tabs' (which is the default) as a child of the Form.

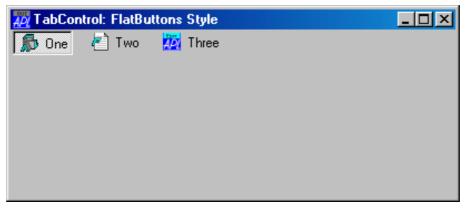

```
'F'□WC'Form' 'TabControl: Default'('Size' 25 50)
'F.TC'□WC'TabControl'
```

Individual tabs or buttons are represented by TabButton objects which should be created as children of the TabControl object. Optional captions and pictures are specified by the Caption and ImageIndex properties of the individual TabButton objects themselves.

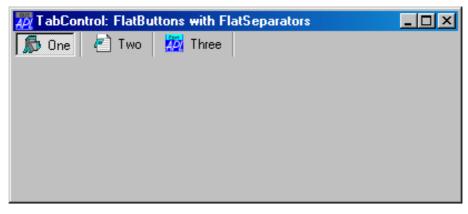
```
'F.TC.IL'□WC'ImageList'
'F.TC.IL.'□WC'Icon'('' 'APLIcon')
'F.TC.IL.'□WC'Icon'('' 'FUNIcon')
'F.TC.IL.'□WC'Icon'('' 'EDITIcon')
'F.TC'□WS'ImageListObj' 'F.TC.IL'
```

Next, create one or more pairs of TabButton and SubForm objects as children of the TabControl. You associate each SubForm with a particular tab by setting its TabObj property to the name of the associated TabButton object. Making the SubForms children of the TabControl ensures that, by default, they will automatically be resized correctly. (You may alternatively create your SubForms as children of the main Form and establish appropriate resize behaviour using their Attach property.)


```
'F.TC.T1' WC'TabButton' 'One'('ImageIndex' 1)
'F.TC.T2' WC'TabButton' 'Two'('ImageIndex' 2)
'F.TC.T3' WC'TabButton' 'Three'('ImageIndex' 3)
'F.TC.S1' WC'SubForm'('TabObj' 'F.TC.T1')
'F.TC.S2' WC'SubForm'('TabObj' 'F.TC.T2')
'F.TC.S3' WC'SubForm'('TabObj' 'F.TC.T3')
```



Style, FlatSeparators and HotTrack Properties


The Style property determines the overall appearance of the tabs or buttons in a TabControl and may be 'Tabs' (the default), 'Buttons' or 'FlatButtons'.

A TabControl object with Style 'Buttons' or 'FlatButtons' may be used in a similar way (i.e. to display a set of alternative pages), although buttons in this type of TabControl are more normally used to execute commands. For this reason, these styles of TabControl are borderless.

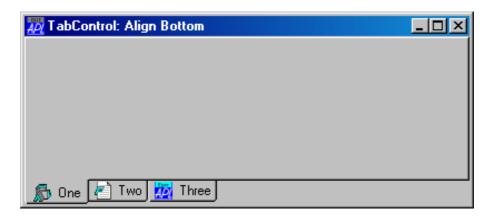
If Style is 'FlatButtons', the FlatSeparators property specifies whether or not separators are drawn between the buttons. The following example illustrates the effect of setting FlatSeparators to 1.

The HotTrack property specifies whether or not the tabs or buttons in a TabControl object (which are represented by TabButton objects), are automatically highlighted by the mouse pointer.

The Align Property

The Align property specifies along which of the 4 edges of the TabControl the tabs or buttons are arranged. Align also controls the relative positioning of the picture and Caption within each TabButton. Align may be Top (the default), Bottom, Left or Right.

If Align is 'Top' or 'Bottom', the tabs or buttons are arranged along the top or bottom edge of the TabControl and the picture is drawn to the left of the Caption.

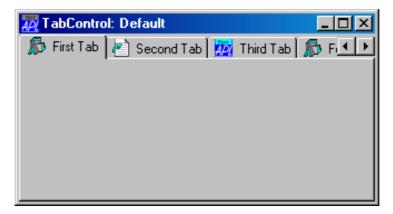

```
'F' | WC'Form' 'TabControl: Align Bottom'('Size' 25 50)
'F.TC' | WC'TabControl'('Align' 'Bottom')

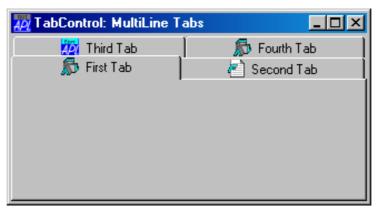
'F.TC.IL' | WC'ImageList'
'F.TC.IL.' | WC'Icon'('' 'APLIcon')
'F.TC.IL.' | WC'Icon'('' 'FUNIcon')
'F.TC.IL.' | WC'Icon'('' 'EDITIcon')

'F.TC' | WS'ImageListObj' 'F.TC.IL'

'F.TC.T1' | WC'TabButton' 'One'('ImageIndex' 1)
'F.TC.T2' | WC'TabButton' 'Two'('ImageIndex' 2)
'F.TC.T3' | WC'TabButton' 'Three'('ImageIndex' 3)

'F.S1' | WC'SubForm'('TabObj' 'F.TC.T1')
'F.S2' | WC'SubForm'('TabObj' 'F.TC.T2')
'F.S3' | WC'SubForm'('TabObj' 'F.TC.T3')
```



If Align is 'Left' or 'Right', the tabs or buttons are arranged top-to-bottom along the left or right edge of the TabControl as shown below.


The MultiLine Property

The MultiLine property of a TabControl determines whether or not your tabs or buttons will be arranged in multiple flights or multiple rows/columns.

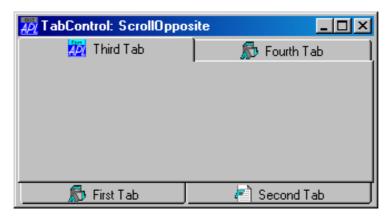
The default value of MultiLine is 0, in which case, if you have more tabs or buttons than will fit in the space provided, the TabControl displays an UpDown control to permit the user to scroll them.

If MultiLine is set to 1, the tabs are displayed in multiple flights.

If the TabControl has Style 'Buttons' and MultiLine is set to 1, the buttons are displayed in multiple rows.

The ScrollOpposite Property

The ScrollOpposite property specifies that unneeded tabs scroll to the opposite side of a TabControl, when a tab is selected. Setting ScrollOpposite to 1 forces MultiLine to 1 also.

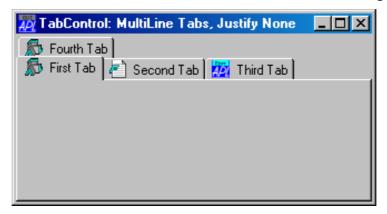

The following example illustrates a TabControl with ScrollOpposite set to 1, after the user has clicked *Third Tab*. Notice that, in this example, the SubForms have been created as children of the TabControl. This is necessary to ensure that they are managed correctly in this case.

```
'F' | WC'Form' 'TabControl: ScrollOpposite'('Size' 25 40)
'F.TC' | WC'TabControl'('ScrollOpposite' 1)

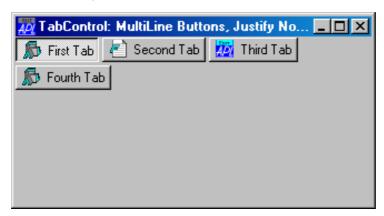
'F.TC.IL' | WC'ImageList'
'F.TC.IL.' | WC'Icon'('' 'APLIcon')
'F.TC.IL.' | WC'Icon'('' 'FUNIcon')
'F.TC.IL.' | WC'Icon'('' 'EDITIcon')

'F.TC' | WS'ImageListObj' 'F.TC.IL'

'F.TC.T1' | WC'TabButton' 'First Tab'('ImageIndex' 1)
'F.TC.T2' | WC'TabButton' 'Second Tab'('ImageIndex' 2)
'F.TC.T3' | WC'TabButton' 'Third Tab'('ImageIndex' 3)
'F.TC.T4' | WC'TabButton' 'Fourth Tab'('ImageIndex' 1)
```



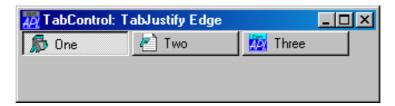
If MultiLine is 1, the way that multiple flights of tabs or rows/columns of buttons are displayed is further defined by the Justify property which may be 'Right' (the default) or 'None'.


The Justify Property

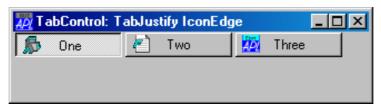
If Justify is 'Right' (which is the default), the TabControl increases the width of each tab, if necessary, so that each row of tabs fills the entire width of the tab control. Otherwise, if Justify is empty or 'None', the rows are ragged as shown below.

```
'F' | WC'Form' 'TabControl: MultiLine Tabs, Justify None'
'F.TC' | WC'TabControl'('MultiLine' 1)('Justify ' 'None')
'F.TC.IL' | WC'ImageList'
'F.TC.IL.' | WC'Icon'('' 'APLIcon')
'F.TC.IL.' | WC'Icon'('' 'FUNIcon')
'F.TC.IL.' | WC'Icon'('' 'EDITIcon')
'F.TC.IL' | WC'Icon'('' 'F.TC.IL'
'F.TC.T1' | WC'TabButton' 'First Tab'('ImageIndex' 1)
'F.TC.T2' | WC'TabButton' 'Second Tab'('ImageIndex' 2)
'F.TC.T3' | WC'TabButton' 'Third Tab'('ImageIndex' 3)
'F.TC.T4' | WC'TabButton' 'Fourth Tab'('ImageIndex' 1)
```


The next picture illustrates the effect of Justify 'None' on a TabControl with Style 'Buttons'.



The TabSize and TabJustify Properties


By default, the size of the tabs may vary from one row to another. Fixed size tabs may be obtained by setting the TabSize property.

If fixed size tabs are in effect, the positions at which the picture and Caption are drawn within each TabButton is controlled by the TabJustify property which may be 'Centre'(the default), 'Edge', or 'IconEdge'.

If TabJustify is set to 'Edge' then the picture and text on the TabButton are justified along the side defined by the Align property (default 'Top').

If, instead, the TabJustify property is set to 'IconEdge' then the text is centred and only the icons are justified.

The TabFocus Property

The TabFocus property specifies the focus behaviour for the TabControl object.

TabFocus is a character vector that may be 'Normal' (the default), 'Never' or 'ButtonDown'.

If TabFocus is 'Normal', the tabs or buttons in a TabControl do not immediately receive the input focus when clicked, but only when clicked a second time. This means that, normally, when the user circulates through the tabs, the input focus will be given to the appropriate control in the associated SubForm. However, if the user clicks twice in succession on the same tab or button, the TabControl itself will receive the input focus.

If TabFocus is 'ButtonDown', the tabs or buttons in a TabControl receive the input focus when clicked.

If TabFocus is 'Never', the tabs or buttons in a TabControl *never* receive the input focus. This allows the user to circulate through a set of tabbed SubForms without ever losing the input focus to the TabControl itself.

The StatusBar Object

Like the Toolbar, the StatusBar object is also a container that manages its children. However, the StatusBar may contain only one type of object, namely StatusFields. By default, the StatusBar is a flat grey object, positioned along the bottom edge of a Form, upon which the StatusFields are drawn as sunken rectangles. StatusFields display textual information and are typically used for help messages and for monitoring the status of an application. They can also be used to automatically report the status of the Caps Lock, Num Lock, Scroll Lock, and Insert keys

The following example illustrates a default StatusBar containing three StatusFields. Notice how the StatusFields are positioned automatically.

```
'TEST'□WC'Form' 'Simple StatusBar' ('EdgeStyle' 'Default')
'TEST.SB'□WC'StatusBar'
'TEST.SB.S1'□WC'StatusField' 'Field1:' 'text1'
'TEST.SB.S2'□WC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3'□WC'StatusField' 'Field3:' 'text3'
```

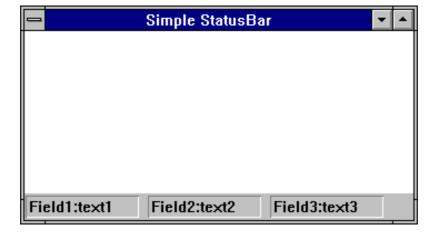


Figure 4.11 A Default StatusBar

The following example illustrates a scrolling StatusBar. The fourth StatusField extends beyond the right edge of the StatusBar and, because HScroll is **-2**, a mini scrollbar appears. The result is shown in Figure 6.11.

```
'TEST' | WC'Form' 'Scrolling StatusBar' ('EdgeStyle' 'Default') ('Coord' 'Pixel') ('Size' 150 330)

'TEST.SB' | WC'StatusBar' ('HScroll' -2)

'TEST.SB.S1' | WC'StatusField' 'Field1:' 'text1' 'TEST.SB.S2' | WC'StatusField' 'Field2:' 'text2' 'TEST.SB.S3' | WC'StatusField' 'Field3:' 'text3' 'TEST.SB.S4' | WC'StatusField' 'Field4:' 'text4'
```


Figure 4.12 A Scrolling StatusBar

As an alternative to single-row scrolling StatusBar, you can have a multi-line one. Indeed, this is the default if you omit to specify HScroll. However, you do have to explicitly set the height of the StatusBar to accommodate the second row.

```
'TEST' WC'Form' 'Multi Line StatusBar'
('EdgeStyle' 'Default')
('Coord' 'Pixel') ('Size' 150 330)

'TEST.SB' WC'StatusBar'('Size' 48 θ)

'TEST.SB.S1' WC'StatusField' 'Field1:' 'text1'
'TEST.SB.S2' WC'StatusField' 'Field2:' 'text2'
'TEST.SB.S3' WC'StatusField' 'Field3:' 'text3'
'TEST.SB.S4' WC'StatusField' 'Field4:' 'text4'
```

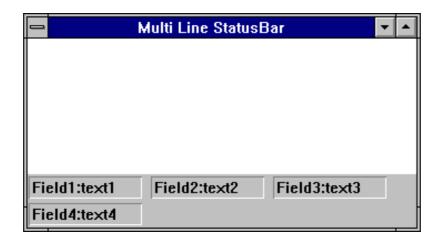


Figure 4.13 A Multi-line StatusBar

Using StatusFields

There are basically three ways of using StatusFields. Firstly, you can display information in them directly from your program by setting their Caption and/or Text properties. For example, if you are executing a lengthy calculation, you may wish to display the word "Calculating ..." as the Caption of a StatusField and, as the calculations proceed, display (say) "Phase 1" followed in due course by "Phase 2", and so forth. You can also use StatusFields to display application messages, including warning and error messages, where the use of a MsgBox is inappropriate.

The second major use of a StatusField is to display **hints** which you do by setting the HintObj property of an object to the name of the StatusField. Used in this way, a StatusField automatically displays context sensitive help when the user places the mouse pointer over an object. This topic is described in Chapter 5.

The third use of a Status Field is to monitor the status of the keyboard. This is achieved by setting its Style property to one of the following keywords:

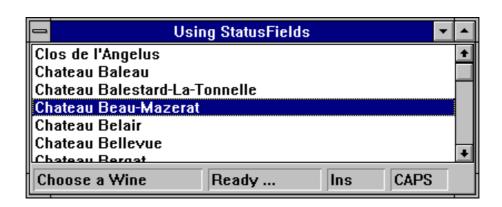
Keyword	Meaning
CapsLock	Monitors state of Caps Lock key
ScrollLock	Monitors state of Scroll Lock key
NumLock	Monitors state of Num Lock key
KeyMode	Monitors the keyboard mode (APL/ASCII
	(Classic Edition only)
InsRep	Monitors the state of the Insert/Replace toggle key

The following example illustrates different uses of the StatusField object. The first StatusField F.SB.S1 is used for context-sensitive help by making it the HintObj for the Form F. The second StatusField F.SB.S2 is simply used to display application status; in this case "Ready ...". The third and fourth StatusField objects monitor the status of the Insert and Caps Lock keys respectively. Note that whilst the Caps Lock, Num Lock and Scroll Lock keys have a recognised *state*, the Insert key does not. Initially, APL sets the key to "Ins" and then toggles to and from "Rep" whenever the key is pressed. To discover which mode the keyboard is in, you should use \[\begin{array}{c} WG \end{array} \text{to read the value of the Text property of the StatusField.} \]

```
'F' | WC'Form' 'Using StatusFields'(60 40)(25 50)

'F.SB' | WC'StatusBar'('Coord' 'Pixel')

'F.SB.S1' | WC'StatusField'('Size'0 150)


'F' | WS'HintObj' 'F.SB.S1'

'F.SB.S2' | WC'StatusField' 'Ready ...'

'F.SB.S3' | WC'StatusField'('Style' 'InsRep')('Size'0 50)

'F.SB.S4' | WC'StatusField'('Style' 'CapsLock')('Size'0 50)

'F.L' | WC'List' WINES(0 0)(80 100)('Hint' 'Choose a Wine')
```


CHAPTER 5

Hints and Tips

In many applications it is often a good idea to provide short context-sensitive help messages that tell the user what action each control (menuitem, button and so forth) performs. It is conventional to do this by displaying a message when the user points to a control with the mouse. The provision of this facility is particularly helpful for users who are not familiar with your application or who use it only occasionally. Constant prompting can however become irritating for an experienced user, so it is a good idea to provide a means to disable it.

Dyalog APL/W provides two mechanisms, *hints* and *tips*, that make the provision of context-sensitive help very easy and efficient to implement. **Hints** are help messages displayed in a fixed region, typically a field in a status bar, that is reserved for the purpose. For example, when the user browses through a menu, a message describing each of the options may be displayed in the status bar. The user has only to glance at the status bar to obtain guidance. **Tips** are similar, but instead of being displayed in a fixed location, they are displayed as pop-up messages over the control to which they refer. The choice of using hints or tips is a matter of taste and indeed many applications feature both.

Using Hints

All of the GUI objects supported by Dyalog APL that have a visible presence on the screen have a Hint property and a HintObj property. Quite simply, when the user moves the mouse pointer over the object the contents of its Hint property are displayed in the object referenced by its HintObj property. When the user moves the mouse pointer away from the object, its Hint disappears. If an object has a Hint, but its HintObj property is empty, the system uses the HintObj defined for its parent, or for its parent's parent, and so forth up the tree. If there is no HintObj defined, the Hint is simply not displayed. This mechanism has two useful attributes:

- it allows you to easily define a single region for help messages for all of the controls in a Form, but still provides the flexibility for using different message locations for different controls if appropriate.
- to enable or disable the display of hints all you typically have to do is to set or clear the HintObj property on the parent Form

The object named by HintObj may be any object with either a Caption property or a Text property. Thus you can use the Caption on a Label, Form, or Button or the text in an Edit object. If you use a StatusField object which has both Caption *and* Text properties, the Text property is employed. If you set HintObj to the name of an object which possesses neither of these properties, the hints will simply not be displayed. The following example illustrates the use of a StatusField for displaying hints.

Example: Using a StatusField for Hints

This example illustrates the use of a StatusField object to display hints. The result of the code shown below is illustrated in Figure 5.1.

```
'Test' □WC 'Form' 'Using Hints'('HintObj' 'Test.SB.H')

'Test.MB' □WC 'MenuBar'

'Test.MB.F' □WC 'Menu' '&File'

HINT ← 'Creates a new empty document'

'Test.MB.F.New' □WC 'MenuItem' '&New' ('Hint' HINT)

'Test.SB' □WC 'StatusBar'

'Test.SB.H' □WC 'StatusField' ('Size' ⊕ 98)
```

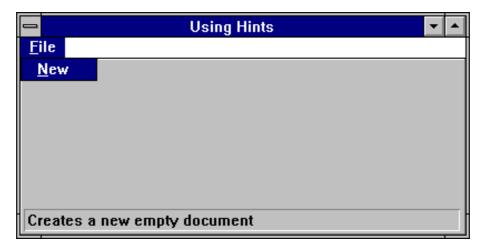


Figure 5.1 Using a StatusBar to display Hints

Example: Using an Edit Object for Hints

You can display a much larger amount of information using a multi-line Edit object as shown in this example.

```
'Test' □WC 'Form' 'Using Hints' ('HintObj' 'Test.ED')

'Test.MB' □WC 'MenuBar'
'Test.MB.F' □WC 'Menu' '&File'
HINT ← 100p'Creates a new empty document '
'Test.MB.F.New' □WC 'MenuItem' '&New' ('Hint' HINT)

'Test.ED' □WC 'Edit' ('Style' 'Multi')
```

The result of this example is illustrated in Figure 5.2.

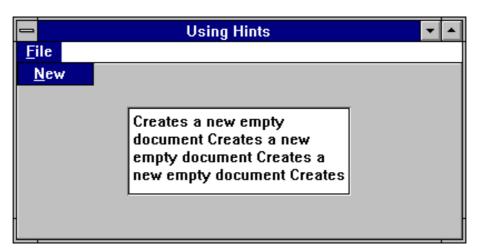


Figure 5.2 Displaying Hints in an Edit object

Using Tips

Tips work in a very similar way to Hints. Most of the GUI objects that have a visible presence on the screen have a Tip property and a TipObj property. Exceptions are Menus, MenuItems and other pop-up objects. The TipObj property contains the name of a TipField object. This is a special kind of pop-up object whose sole purpose is to display tips. When the user moves the mouse pointer over the object the corresponding TipField appears displaying the object's Tip. When the mouse pointer moves away from the object, the TipField disappears. If an object has a Tip, but its TipObj property is empty, the system uses the TipObj defined for its parent, or for its parent's parent, and so forth up the tree. If there is no TipObj defined, the Tip is simply not displayed. Normally, you need only define one TipField for your application, but if you want to use different colours or fonts for individual tips, you may define as many different TipFields as you require. Again, it is very simple to turn tips on and off.

Example

This example shows how easy it is to associate a tip with an object, in this case a Button.

```
'Test'□WC 'Form' 'Using Tips'('TipObj' 'Test.Tip')
'Test.Tip' □WC 'TipField'
'Test.B' □WC 'Button' '&Ok' ('Tip' 'Press Me')
```

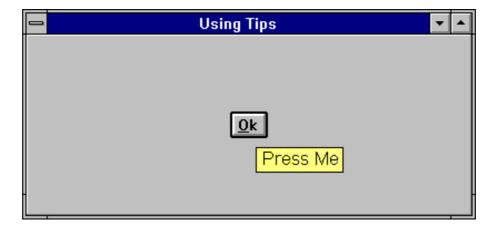


Figure 5.3 Using Tips

Hints and Tips Combined

There is no reason why you cannot provide Hints *and* Tips. Example 4 shows how an object, in this case a Combo, can have both defined.

Example

```
'Test' | WC 'Form' 'Using Hints and Tips'

'Test.SB' | WC 'StatusBar'
'Test.SB.H' | WC 'StatusField' ('Size' & 98)
'Test' | WS 'HintObj' 'Test.SB.H'

'Test.Tip' | WC 'TipField'
'Test' | WS 'TipObj' 'Test.Tip'

'Test.C' | WC 'Combo' WINES
'Test.C' | WS 'Hint' 'Select your wine from this list'
'Test.C' | WS 'Tip' 'Wine Cellar'
```

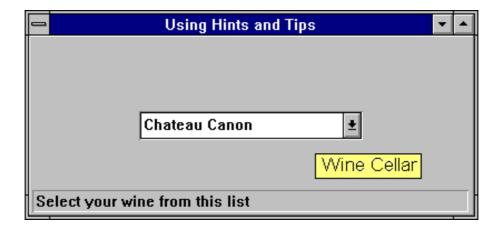


Figure 5.4 Hints and Tips Combined

CHAPTER 6

Using the Grid Object

The Grid object allows you to display information in a series of rows and columns and lets the user input and change the data. The Grid has four main components; a matrix of cells that represents the data, a set of row titles, a set of column titles, and a pair of scroll bars. Figure 7.1 illustrates these components. The scroll bars scroll the data cells and either the row or column titles. The row titles remain fixed in place when the data cells scroll horizontally and the column titles stay fixed when the data is scrolled vertically.

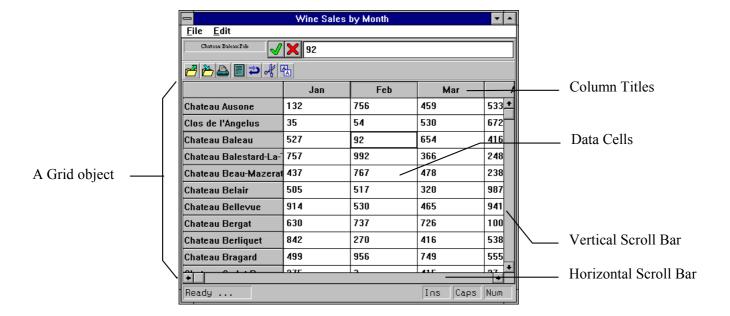


Figure 7.1 The components of the Grid object

Defining the Grid Layout

The data in the Grid is specified by its Values property. This is a matrix whose elements are displayed in the corresponding cells in the Grid. An element (and therefore a cell) may contain a single number, a single character, a character vector or a character matrix.

The row and column titles are specified by the RowTitles and ColTitles properties respectively. Each of these is a vector whose elements may be character vectors, character matrices, or vectors of character vectors. Matrices and vectors of vectors specify multi-line titles. The specification of RowTitles and ColTitles is optional. If they are omitted, the system will display standard spreadsheet defaults; 1,2,3... for the rows and A,B,C...AA,AB...for the columns. By default, RowTitles are left-justified; ColTitles are centred, although this can be changed using the RowTitleAlign and ColTitleAlign properties. Multi-level titles may be defined using the RowTitleDepth and ColTitleDepth properties.

The height of the column headers and the width of the row titles are defined by the TitleHeight and TitleWidth properties. To disable the display of column and/or row titles, you simply set TitleHeight and/or TitleWidth to 0.

The dimensions of the cells of the Grid are defined by the CellHeights and CellWidths properties. Each of these may be a scalar which applies to all rows and columns, or a vector which specifies the heights and widths of each row and column individually. You may also allow the user to resize rows and columns with the mouse.

The Grid shown in Figure 7.1 was created using the following few lines of APL code. Note that by default a Grid is positioned in the centre of a Form and occupies a quarter of its area. In this example, the Grid is positioned at (0 0) and made to occupy the entire client area of the Form. Note that SALES is a simple numeric matrix, WINES is a vector of character vectors containing the names of different wines, and MONTHS is a similar vector of month names.

```
'Test' [WC 'Form' ('Coord' 'Pixel')
'Test.G' [WC 'Grid' SALES (0 0) ('Test' [WG 'Size')
'Test.G' [WS 'RowTitles' WINES
'Test.G' [WS 'ColTitles' MONTHS
'Test.G' [WS 'TitleWidth' 150
```

Defining Overall Appearance

By default, the Grid inherits its font from the parent Form, or ultimately, from the Root object. This defaults to your Windows System font.

You can change the font for the Grid as a whole using its FontObj property. This font will be used for the row titles, column titles and for the data. You can separately define the font for the data using the CellFonts property. Thus, for example, if you wanted to use Helvetica 12 for the titles and Arial 10 for the data, you could do so as follows:

```
'Test.G' □WS 'FontObj' 'Helvetica' 12
'Test.CF' □WC 'Font' 'Arial' 10
'Test.G' □WS 'CellFonts' 'Test.CF'
```

The FCol and BCol properties specify the foreground and background colours for the text in the data cells. The default colour scheme is black on white. FCol and BCol may define single colours which refer to all the cells, or a set of colours to be applied to different cells

The colour of the gridlines is specified by GridFCol. To draw a Grid with no gridlines, set GridFCol to the same colour as is defined by BCol.

If the Grid is larger than the space occupied by the data cells, GridBCol specifies the colour used to fill the area between the end of the last column of data and the right edge of the Grid, and between the bottom row of data and the bottom edge of the Grid.

The ClipCells property determines whether or not the Grid displays partial cells. The default is 1. If you set ClipCells to 0, the Grid displays only complete cells and automatically fills the space between the last visible cell and the edge of the Grid with the GridBCol colour.

The following example shows a default Grid (ClipCells is 1) in which the third column of data is in fact incomplete (clipped), although this is by no means apparent to the user.

ClipCells is 1 (the default)								
	Α	В	С					
1	13	75	4					
2	51	83						
3	68	58	9					
4	76	26						
5	98	72	7					
+			+					

This second picture shows the effect on the Grid of setting ClipCells to 0 which prevents such potential confusion.

□ ClipCells is 0 □								
	Α	В						
1	13	75						
2	51	83						
3	68	58						
4	76	26						
5	98	72						
+	→ □							

Row and Column Titles

Row and column titles are defined by the RowTitles and ColTitles properties, each of which is a vector of character arrays. An element of RowTitles and ColTitles may be a character vector specifying a 1-row title, or a matrix or vector of vectors which specify multi-row titles.

The height of the area used to display column titles is specified by the TitleHeight property. The width of the area used to display row titles is defined by the TitleWidth property. The alignment of text within the title cells is defined by RowTitleAlign and ColTitleAlign and the colour of the text is specified by RowTitleFCol and ColTitleFCol.

Multi-level titles are also possible and are defined by the RowTitleDepth and ColTitleDepth properties. An example of what can be achieved is shown below.

## Hierarchical Titles ■ ■								□ ×
		Wine		Champagne			Beer	
			Red	White	Red	White	Rose	and Cider
		Jan	60	92	16	4	72	52
	Q1	Feb	41	6	2	7	6	12
		Mar	98	39	25	2	37	42
		Apr	83	95	32	55	34	90
	Q2	May	65	54	37	23	16	92
1995		Jun	5	23	61	23	57	19
1335		Jul	42	19	64	79	70	4
	Q3	Aug	25	54	84	47	65	97
		Sep	73	91	34	58	97	97
		Oct	60	65	3	50	56	75
	Q4	Nov	30	39	50	45	31	93
		Dec	1	32	76	99	43	10

Displaying and Editing Values in Grid Cells

The Grid can display the value in a cell directly (as in Fig 7.1) or indirectly via an associated object. You do not (as you might first expect) define input and validation characteristics for the cells directly, instead you do so *indirectly* through associated objects. Objects are associated with Grid cells by the Input property. If a cell has an associated object, its value is displayed and edited using that object. Several types of object may be associated with Grid cells, including Edit, Label, Button (Push, Radio and Check), and Combo objects. You can use a single associated object for the entire Grid, or you can associate different objects with individual cells.

Edit and Label objects impose formatting on the cells with which they are associated according to the values of their FieldType and Decimal properties (for numbers, dates and time) and their Justify property (for text). In addition, Label objects protect cells (because a Label has no input mechanism), while Edit objects impose input validation. If you use an Edit object with a FieldType of Numeric, the user may only enter numbers into the corresponding cells of the Grid. For both Edit and Label objects, the FieldType and Decimals properties of the object are used to format the data displayed in the corresponding cells of the Grid. For example, if the FieldType property of the associated object is Date, the numeric elements in Values will be displayed as dates.

Numeric cells may also be formatted using the FormatString property which applies FMT format specifications to the data. The AlignChar property permits formatted data to be aligned in a column. For example, you can specify that numbers in a column are aligned on their decimal points.

Combo objects can be used to allow the user to select a cell value from a set of alternatives. Radio and Check Buttons may be used to display and edit boolean values.

Associated Edit, Label and Combo objects may be *external* to the Grid (for example, you can have the user type values into a companion edit field) or they may be *internal*. Internal objects (which are implemented as children of the Grid) float from cell to cell and allow the data to be changed *in-situ*. Button, Spinner and TrackBar objects may only be internal.

Using a Floating Edit Field

If the Edit object specified by Input is owned by (i.e. is a child of) the Grid itself, the Edit object *floats* from cell to cell as the user moves around the Grid. For example, if the user clicks on the cell addressed by row 4, column 3, the Edit object is automatically moved to that location and the data in that cell is copied into it ready for editing. When the user moves the focus away from this cell, the data in the Edit object is copied back into it (and into the corresponding element of the Values property) before the Edit object is moved away to the new cell location. This mechanism provides *in-situ* editing. Continuing the example illustrated in Figure 7.1, in-situ editing could be achieved as follows:

```
'Test.G.ED' □WC 'Edit' ('FieldType' 'Numeric')
'Test.G' □WS 'Input' 'Test.G.ED'
```

In-situ editing provides two input modes; Scroll and InCell. In Scroll mode the cursor keys move from one cell to another. In InCell mode, the cursor keys move the cursor a character at a time within the cell; to switch to a new cell, the user must press the Tab key or use the mouse. The InputMode property allows you to control the input mode directly or to allow the user to switch from one to another. In the latter case, the user does so by pressing a key defined by the InputModeKey property or by double-clicking the left mouse button.

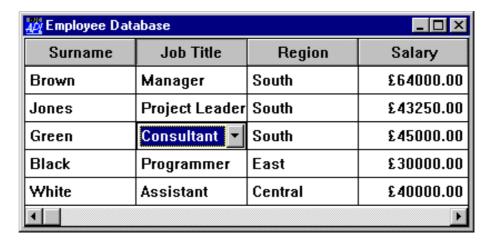
Using a Fixed Edit Field

A different style of editing may be provided by specifying the name of an external Edit object that you have created. This can be any Edit object you wish to use; it need not even be owned by the same Form as the Grid. In this case, the Edit object remains stationary (wherever you have positioned it), but as the user moves the focus from cell to cell, the cell contents are copied into it and made available for editing. The current cell is identified by a thick border. When the user shifts the focus, the data is copied out from the Edit object into the corresponding cell before data in the newly selected one is copied in. Continuing the example illustrated in Figure 7.1, external editing could be achieved as follows:

Using Label Objects

If Input specifies a Label object, it too may either be a child of the Grid or an external Label. A Label is useful to format cell data (through its FieldType property) and to protect cells from being changed

If the Label is a child of the Grid, it floats from cell to cell in the same way as a floating Edit object. However, unlike the situation with other objects, the row and column titles are not indented to help identify the current cell. If the Label is borderless (which is the default) and has the same font and colour characteristics of the cells themselves, the user will receive no visual feedback when a corresponding cell is addressed, even though the current cell (reflected by the CurCell property) does in fact change. Therefore, if you want to protect the data by using a Label *and* you want the user to be able to identify the current cell, you should give the Label a border, a special colour scheme or a special font.


Using Combo Objects

A Combo object is used to present a list of choices for a cell. Although you *may* use an external Combo, internal Combos are more suitable for most applications. If different cells have different sets of choices, you can create several Combo objects, each with its own set of Items and associate different cells with different Combos through the CellTypes property. Alternatively, you can use a single Combo and change Items dynamically from a callback on the CellMove event. In all cases, the value in the cell corresponds to the Text property of the Combo.

If you use a floating Combo, the appearance of the non-current cells depends upon the value of the ShowInput property. If ShowInput is 0 (the default), the non-current cells are drawn in the standard way as if there were no associated input object. If ShowInput is 1, the non-current cells are given the *appearance* of a Combo, although the system does not actually use Combos to do so. Furthermore, there is a subtle difference in behaviour. If ShowInput is 0, the user must click twice to change a value; once to position the Combo on the new cell and again to drop its list box. If ShowInput is 1, the user may drop the list box with a single click on the cell.

Note that ShowInput may be a scalar that applies to the whole Grid, or a vector whose elements applies to different cells through the CellType property.

The following Grid uses two internal Combo objects for the *Job Title* and *Region* columns, but with ShowInput set to 0. Only the current cell has Combo appearance.

The same Grid with ShowInput set to 1 is illustrated below. In this case, all of the cells associated with Combo objects have Combo appearance.

Using Radio and Check Button Objects

Radio and Check Buttons behave in a similar way to Combo objects except that they may only be used internally. The value in the cell associated with the Button must be 0 or 1 and corresponds to the Button's State property. The value is toggled by clicking the Button.

If ShowInput is 0, the user must click twice to change a value; once to position the (floating) Button on the cell, and a second time to toggle its state. If ShowInput is 1, the user may change cell values directly with a single click. Note that this may be undesirable in certain applications because the user cannot click on a cell without changing its value.

By default, the value of the EdgeStyle property for a Radio or Check Button which is created as the child of a Grid is 'None', so you must set EdgeStyle explicitly to 'Plinth' if a 3-dimensional appearance is required.

You can refine the appearance of the Radio or Check Button using its Align property. This may be set to 'Left', 'Right' or 'Centre' (and 'Center'). The latter causes the symbol part of the Button (the circle or checkbox) to be centred within the corresponding Grid cell(s) but should only be used if the Caption property is empty.

The following illustrates different values for the Align property using Check Buttons.

Aligned Check Boxes in a Grid							
	Α		В	С			
1	Left		×	☐ Right	1		
2	Left	×		☐ Right	Н		
3	Left	×	×	⊠ Right			
4	Left		×	⊠ Right			
5	Left			⊠ Right			
6	Left	×		☐ Right			
7	Left		П	▼ Right	+		

Specifying Individual Cell Attributes

The FCol, BCol, CellFonts and Input properties can be used to specify attributes of individual cells. One possible design would be for these properties to be matrices like the Values property, each of whose elements corresponded to a cell in the Grid. However, although conceptually simple, this design was considered to be wasteful in terms of workspace, especially as it is unlikely that every cell will require a totally individual set of attributes. Instead, FCol, BCol, CellFonts and Input either specify a single attribute to be applied to all cells, or they specify a vector of attributes which are indexed through the CellTypes property. This design is slightly more complex to use, but minimises the workspace needed to represent cell information.

CellTypes is an integer matrix of the same size as Values. Each number in CellTypes defines the *type* of the corresponding cell, where *type* means a particular set of cell attributes defined by the BCol, FCol, CellFonts and Input properties.

If an element of CellTypes is 0 or 1, the corresponding cell is displayed using the *normal* value of each of the FCol, BCol, CellFonts and Input properties. The normal value is either the value defined by its first element or, if the property has not been specified, its default value.

If an element of CellTypes is greater than 1, the corresponding element of each of the FCol, BCol, CellFonts and Input properties is used. However, if a particular property applies to all cells, you need only specify one value; there is no need to repeat it. This mechanism is perhaps best explained by using examples.

Example 1

232

65

Suppose that you want to use a Grid to display a numeric matrix DATA and you want to show elements whose value exceeds 150 with a dark grey background. Effectively, there are 2 different types of cell; normal white ones and dark grey ones. This can be achieved as follows:

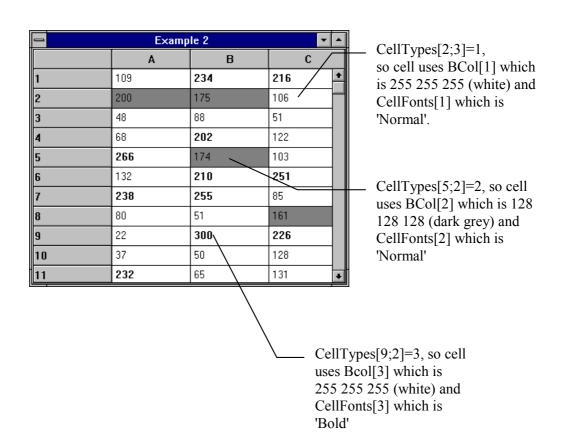
```
DATA ← ?12 3p300

'Test' □WC 'Form' 'Example 1'
'Test.G' □WC 'Grid' DATA (0 0) (100 100)

'Test.G' □WS 'CellTypes' (1+DATA>150)
```

'Test.G' [WS 'BCol' (255 255 255)(128 128 128)

_	Examp	le 1	▼ 2	•	
	A	В	c	4	CellTypes $[3;3] = 1$, so cell uses
1	109	234	216	1	first element of Bcol which is
2	200	175	106	1	255 255 255 (white)
3	48	88	51		
4	68	202	122		
5	266	174	103		
6	132	210	251		
7	238	255	85	4	CellTypes $[6;3] = 2$, so cell uses
8	80	51	161		second element of Bcol which is
9	22	300	226		128 128 128 (dark grey)
10	37	50	128		


131

Example 2

Continuing on from the first example, suppose that in addition, you want to show values that exceed 200 with a white background, but using a bold font. Now you have 3 types of cell; white background with normal font, dark grey background with normal font, and white background with bold font. This can be done as follows:

```
CT ←(DATA > 200) + 1+DATA > 100
'Test.G' □WS 'CellTypes' CT

COL ← (255 255 255) (128 128 128) (255 255 255)
'Test.G' □WS 'BCol' COL
'Normal' □WC 'Font' 'Helvetica' 16
'Bold' □WC 'Font' 'Helvetica' 16 ('Weight' 1000)
'Test.G' □WS 'CellFonts' 'Normal' 'Normal' 'Bold'
```


Example 3

This is a more complex example that introduces different uses of the Input property to handle numeric and date cells. Suppose that you wish to display the names, date of birth, and salaries of some people. The user may edit the salary and date of birth, but not the name. Salaries in excess of \$19,999 are to be shown in bold

This means that we need 4 types of cell; the "names" cells, the "date of birth" cells, the cells containing salaries below \$20,000 and those cells containing \$20,000 or more. The Input property must specify 3 different objects; a Label for the protected "names" cells, an Edit object for the "date" cells, and a different Edit object for the salaries. The CellFonts property must specify the two different fonts required; normal and bold.

_	Examp	•			
	Name	Date of Birth	Salary		Celltypes[2;1]=1
1	Jones	08/11/83	\$10303.00	1	Centypes[2,1]=1
2	Smith	05/03/84	\$28263.00		
3	White	27/07/82	\$10866.00		G 11T
4	Baker	06/04/ 84	\$10562.00	+	CellTypes[4;2]=2
5	O'Donnel	29/10/82	\$2420.00		
6	Black	25/10/83	\$17157 <u>.00</u>	4	CellTypes[6;3]=3
7	Redman	23/06/84	\$2\3292.00		
8	Green	31/12/82	\$25327.00		
9	Anderson	21/10/83	\$14799.00		G 11T 510.03 4
10	Andrews	25/06/82	\$2452 0.00	+	CellTypes[10:3]=4
11	Batchelor	28/02/83	\$19283.00	÷	

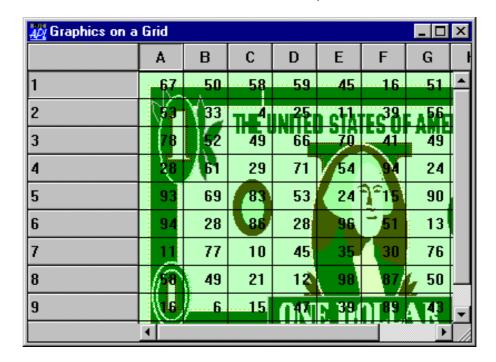
Drawing Graphics on a Grid

You may draw graphics on a Grid by creating graphical objects (Circle, Ellipse, Image, Marker, Poly, Rect and text) as *children* of the Grid.

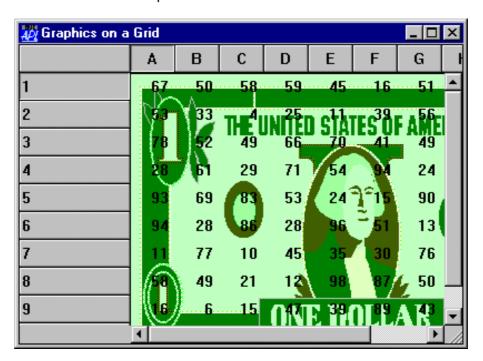
For the Grid (but only for the Grid) the Coord property may be set to 'Cell' as an alternative to 'Prop', 'Pixel' or 'User'. This allows you to easily position graphical objects relative to individual cells or ranges of cells. The origin of the Grid (0,0) is deemed to be the top left corner of the data (i.e. the area inside the row and column titles). In Cell co-ordinates, the value (1,1) is therefore the bottom right corner of the first cell. Regardless of the coordinate system, graphical objects scroll with the data.

The following example illustrates how to draw a box around the cells in rows 2 to 4 and columns 3 to 6.

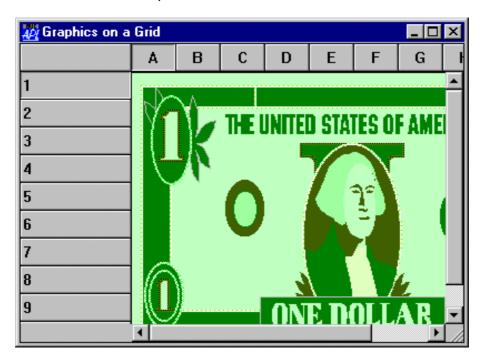
```
'F'□WC'Form' 'Graphics on a Grid'
'F.G'□WC'Grid' (?10 10p100)(0 0)(100 100) ('CellWidths' 10)
'F.G.L'□WC'Rect'(1 3)(3 4)('LWidth' 4)('Coord' 'Cell')
```


Graphics on a Grid								×
	Α	В	С	D	Е	F	G	ŀ
1	76	67	64	6	60	23	32	
2	53	56	59	33	71	15	17	
3	56	74	32	14	53	32	59	
4	38	40	45	48	39	28	8	
5	68	52	73	73	95	47	95	
6	67	41	61	99	16	68	35	
7	2	28	65	55	92	27	98	
8	46	82	3	17	71	71	44	
9	70	28	76	18	1	50	8	
10	75	44	1	59	52	7	55	
	1							F

The OnTop property of the graphical object controls how it is drawn relative to the grid lines and cell text. For graphical objects created as a child of a Grid, OnTop may be 0, 1 or 2.


- O Graphical object is drawn behind grid lines and cell text
- 1 Graphical object is drawn on top of grid lines but behind cell text
- 2 Graphical object is drawn on top of grid lines and cell text

The following example shows the effect of the OnTop property on how an Image is drawn on a Grid.


```
'F' | WC'Form' 'Graphics on a Grid' ('Size' 45 50)
'F.G' | WC'Grid' (?10 10p100)(0 0)(100 100) ('CellWidths' 10)
'F.M' | WC'MetaFile' 'C:\WDYALOG\WS\DOLLAR'
'F.G.I' | WC'Image'(0 0)('Size' 10 10)('Coord' 'Cell')
'F.G.I' | WS('Picture' 'F.M')('Ontop' 0)
```


'F.G.I'□WS 'OnTop' 1

'F.G.I'□WS 'OnTop' 2

Controlling User Input

The Grid object is designed to allow you to implement simple applications with very little programming effort. You merely present the data to be edited by setting the Values property and then get it back again once the user has signalled completion. The validation imposed by the associated Edit object(s) will prevent the user from entering invalid data and your program can leave the user interaction to be managed entirely by APL. However, for more sophisticated applications, the Grid triggers events which allow your program to respond dynamically to user actions.

Moving from Cell to Cell

When the user moves from one cell to another, the Grid generates a CellMove event. This reports the co-ordinates (row and column) of the newly selected cell. The CellMove event serves two purposes. Firstly, it allows you to take some special action when the user selects a particular cell. For example, you could display a Combo or List object to let the user choose a new value from a pre-defined set, then copy the selected value into the cell. Secondly, the CellMove event provides the means for you to position the user in a particular cell under program control, using $\square NQ$.

Changing Standard Validation Behaviour

Input validation is provided by the Edit object associated with a cell. By default, the built-in validation will prevent the user from leaving the cell should the data in that cell be invalid. For example, if the FieldType is 'Date' and the user enters 29th February and a non-leap year, APL will beep and not allow the user to leave the cell until a valid date has been entered. If you wish instead to take some other action, for example display a message box, you should use the CellError event. This event is generated immediately the user attempts to move to another cell when the data in the current cell is invalid. The event is also generated if the user selects a MenuItem, presses a Button or otherwise changes the focus away from the current cell.

The CellError event reports the row and column number of the current cell, the (invalid) text string in that cell, the name of the object to which the user has transferred attention or the co-ordinates of the new cell selected. The default action of the event is to beep, so to disable the beep your callback function should return a 0. If you wish to allow the user to move to a different cell, you must do so explicitly by generating a CellMove event using $\square NQ$ or by returning a CellMove event as the result of the callback.

Reacting to Changes

If enabled, the Grid object generates a CellChange event whenever the user alters data in a cell and then attempts to move to another cell or otherwise shifts the focus away from the current cell. This allows you to perform additional validation or to trigger calculations when the user changes a value. The CellChange event reports the coordinates of the current cell and the new value, together with information about the newly selected cell or the external object to which the focus has changed.

The default action of the CellChange event is to replace the current value of the cell with the new one. If you wish to prevent this happening, your callback function must return a 0. If in addition you wish the focus to remain on the current cell, you must do this explicitly by using the CellMove event to reposition the current cell back to the one the user has attempted to leave.

Restoring User Changes

The Grid object supports an Undo method which causes the last change made by the user to be reversed. This method can only be invoked under program control using DNQ and cannot be directly generated by the user. If you want to provide an *undo* facility, it is recommended that you attach a suitable callback function to a MenuItem or a Button. To perform an undo operation, the callback function should then generate an Undo event for the Grid object.

Updating Cell Data

You can change the entire contents of the Grid by resetting its Values property with **DWS**. However, this will causes the entire Grid to be redrawn and is not to be recommended if you only want to change one cell or just a few cells.

You can change the value in a particular cell by using $\square NQ$ to send a CellChange event to the Grid. For example, if you want to alter the value in row 2 column 3 of the Grid object called Test. G to 42, you simply execute the following statement:

```
□NQ 'Test.G' 'CellChange' 2 3 42
```

To update an entire row or column of data you can use the RowChange and ColChange events. For example, to change all 12 columns of row 500 to the 12-element vector TOTAL, you could execute:

```
□NQ 'Test.G' 'RowChange' 500 TOTAL
```

Deleting Rows and Columns

You can delete a row or column by using DNQ to send a DelRow or DelCol message to the Grid object. For example, the following statement deletes the 123rd row from the Grid object Test.G. Note that if you have specified it, the corresponding element of RowTitles is removed too.

□NQ 'Test.G' 'DelRow' 123

Inserting Rows and Columns

You can insert or add a row or column using the AddRow or AddCol method. You must specify the following information.

row or column number title (optional) height or width (optional) undo flag (optional) resize flag (optional) title colour (optional) gridline type (optional)

The event message must specify the number of the row or column you wish to insert. This is index-origin dependent and indicates the number that the row or column will have after it has been inserted. For example, if \(\begin{align*} \text{IO} \) is 1 and you wish to insert a row between the 10th and 11th rows, you specify the number of the row to be inserted as 11. If you wish to insert a new column before the first one, you specify a column number of 1. To append a row or column to the end of the Grid, you should specify 1 + the current number of rows or columns.

If you have specified RowTitles or ColTitles, the message may include a title for the new row or column and this will be inserted in RowTitles or ColTitles as appropriate. If you fail to supply a new title, an empty vector will be inserted in RowTitles or ColTitles for you. If you are using default row and column headers and you have not specified RowTitles or ColTitles, any title you supply will be ignored. In this case the rows and columns will be re-labelled automatically.

If you have set CellHeights or CellWidths to a vector, the AddRow or AddCol event message may include the height or width of the new row or column being inserted. If you fail to supply one or you specify a value of $^-1$ the default value will apply. Note that setting the height or width to 0 *is* allowed and will cause the new row or column to be invisible. If CellHeights or CellWidths has not been specified or is a scalar, the new row or column will be given the same height or width as the others and any value that you specify is ignored.

The undo flag indicates whether or not the insertion will be added to the undo stack and may therefore be subsequently undone. Its default value is 1.

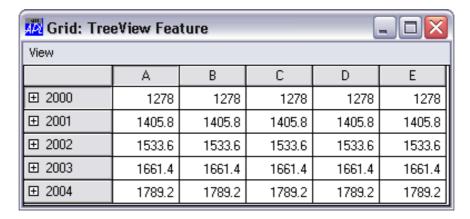
If the data in the Grid is entirely numeric, the new row or column will be filled with zeros. If not, it will be filled with empty character vectors. If you want to set the row or column data explicitly, you should invoke the ChangeRow or ChangeCol immediately after the AddRow or AddCol event. The ChangeRow and ChangeCol event require just the row or column number followed by the new data.

The following example adds a new row entitled "Chateau Latour" to a Grid object called Test.G. The first statement adds a new row between rows 122 and 123 (it becomes row 123) of the Grid. It will be of default height (or the same as all the other rows) and the change may not be undone (the undo flag is 0). The second statement sets the data in the new row to the values defined by the vector LATOUR_SALES.

```
□NQ 'Test.G' 'AddRow' 123 'Chateau Latour' <sup>-</sup>1 0
□NQ 'Test.G' 'ChangeRow' 123 LATOUR_SALES
```

TreeView Feature

Introduction


The Grid can display a *TreeView like* interface in the row titles and automatically shows and hides row of data as the user expands and contracts nodes of the tree.

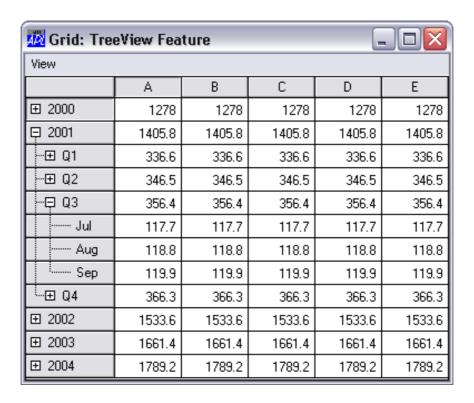
RowTreeDepth property

The tree structure is specified by the RowTreeDepth property This is either a scalar 0 or an integer vector of the same length as the number of rows in the grid. RowTreeDepth is similar to the Depth property of the TreeView object.

Each element of RowTreeDepth specifies the depth of the corresponding row of the Grid. A value of 0 indicates that the row is a top-level row. A value of 1 indicates that the corresponding row is a child of the most recent row whose RowTreeDepth is 0; a value of 2 indicates that the corresponding row is a child of the most recent row whose RowTreeDepth is 1, and so forth.

The picture below illustrates the initial appearance of a Grid with TreeView behaviour. Notice that at first only the top-level rows are displayed.

The TreeGrid function that was used to generate this Grid is shown overleaf. The tree structure is defined on TreeGrid[26].

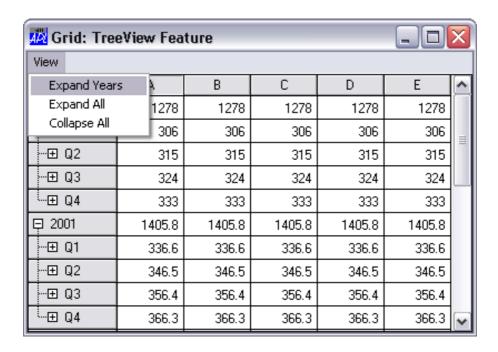

In this example, the Grid has top-level rows (RowTreeDepth of 0) that contain annual totals. The second-tier rows (RowTreeDepth of 1), contain quarterly totals, while the third-tier rows (RowTreeDepth of 2) contain monthly figures.

```
▼ TreeGrid; SIZE; YR; YRS; DATA; MDATA; QDATA; YDATA; IX
[1]
[2]
          SIZE←380 400
          'F'□WC'Form'
                             'Grid: TreeView Feature'
                             ('Coord' 'Pixel')
[3]
          F.Size+SIZE
[4]
[5]
          'F.MB'□WC'MenuBar'
          'F.MB.View' WC'Menu' 'View'
          'F.MB.View.Expand1'□WC'MenuItem' 'Expand Years' 'F.MB.View.Expand1'□WS'Event' 'Select'
[6]
[7]

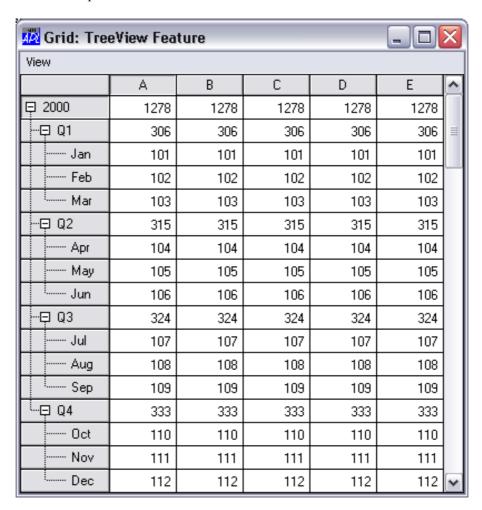
♠F.G.RowSetVisibleDepth 1'

          'F.MB.View.Expand2' WC'MenuItem' 'Expand All'
'F.MB.View.Expand2' WS'Event' 'Select'
[8]
[9]
                                            ★F.G.RowSetVisibleDepth 2'
          'F.MB.View.Collapse'□WC'MenuItem' 'Collapse All' 'F.MB.View.Collapse'□WS'Event' 'Select' '±F.G.RowSetVisibleDepth 0'
[10]
וֹ 11
          'F.G'□WC'Grid'('Posn' 0 0)SIZE
[12]
          F.G.(TitleWidth CellWidths←80 60)
YR←'Q1' 'Jan' 'Feb' 'Mar' 'Q2' 'Apr' 'May' 'Jun'
YR,←'Q3' 'Jul' 'Aug' 'Sep' 'Q4' 'Oct' 'Nov' 'Dec'
YRS←'2000' '2001' '2002' '2003' '2004'
[13]
[14]
[15]
[16]
          F.G.RowTitles+>,/(c"YRS),"cYR
[17]
          MDATA←12 5ρ5/100+112
[18]
          YDATA←+/MDATA
[19]
[20]
          QDATA\leftarrow(3+/[1]MDATA)[1 4 7 10;]
[21]
          MDATA \leftarrow ((\rho YR)\rho 0 \ 1 \ 1 \ 1) + MDATA
[22]
          MDATA[1 5 9 13;] ←QDATA
          YDATA+YDATA,[1]MDATA
[23]
[24]
          DATA+>,[1]/1 1.1 1.2 1.3 1.4×<YDATA
[25]
          F.G.Values←DATA
[26]
          F.G.RowTreeDepth←(ρF.G.RowTitles)ρ0,(ρYR)ρ1 2 2 2
```

When the user clicks on one of the nodes indicated by a "+" symbol, the Grid automatically expands to display the rows at the next level below that node. At the same time, an Expanding event is generated. In the next picture, the user has clicked on the 2001 node and, below that, the O3 node.



RowSetVisibleDepth Method


The Grid provides a RowSetVisibleDepth method that provides *tier-level* control over which rows are displayed.

The value of its argument is an integer that specifies the depth of rows to be displayed. The Grid displays all rows whose RowTreeDepth values are less than or equal to this value. In the example, this method is called by items on the *View* menu.

The next picture shows how the Grid is displayed after choosing *Expand Years* from the *View* menu. Notice that, as specified by TreeGrid[6] this menu item simply executes the RowSetVisibleDepth method with an argument of 1.

Similarly, the *Expand All item executes* RowSetVisibleDepth 2, as specified by TreeGrid[7] and this causes the Grid to display all rows up to and including RowTreeDepth of 2 as shown below.

Note that the *Collapse All* item executes RowSetVisibleDepth 0, which causes only the top-level rows to be displayed.

You may open specific nodes by invoking the Expanding event as a method.

Fine control over the appearance of the tree is provided through the RowTreeImages and RowTreeStyle properties. See Object Reference for further details.

Grid Comments

Introduction

Grid comments are implemented in a manner that is consistent with the way comments are handled in Microsoft Excel.

If a comment is associated with a cell, a small red triangle is displayed in its top right corner. When the user rests the mouse pointer over a commented cell, the comment is displayed as a pop-up with an arrow pointing back to the cell to which it refers. The comment disappears when the mouse pointer is moved away. This is referred to as *tip* behaviour.

It is also possible to display and hide comments under program control. A comment window displayed under program control does not (normally) disappear automatically when the user moves the mouse, but instead must be hidden explicitly. It is therefore possible to have several comments visible.

Implementation

Because comments are typically sparse, this facility is implemented by a small set of *methods* rather than as a property, and comments are stored internally in data structures that minimise storage space. The following methods and events are provided.

Event/Method	Number	Description
AddComment	220	Associates a comment with a cell
DelComment	221	Deletes the comment associated with a particular cell
GetComment	222	Retrieves the comment associated with a given cell
ShowComment	223	Displays a comment either as a pop-up or on-top window
HideComment	224	Hides a comment
ClickComment	225	Reported when user clicks the mouse on a comment window

A comment is described by its text content and the size of the window in which it appears. The text may optionally be *Rich Text* (RTF) such as that produced by the value of the RTFText property of a RichEdit object. The size of the window is specified in pixels.

AddComment Method

This method is used to add a new comment. For example, the following statement associates a comment with the cell at row 2, column 1; the text of the comment is "Hello", and the size of the comment window is 50 pixels (high) by 60 pixels (wide).

```
2 [NQ'F.G' 'AddComment' 2 1 'Hello' 50 60
```

The height and width of the comment window, specified by the last 2 elements of the right argument to $\square NQ$ are both optional. If the cell already has an associated comment, the new comment replaces it.

Note that just before the comment is displayed, the Grid generates a ShowComment event which gives you the opportunity to (temporarily) change the text and/or window size of a comment dynamically.

DelComment Method

This method is used to delete a comment. For example, the following expression removes the comment associated with the cell at row 2, column 1.

```
2 DNQ'F.G' 'DelComment' 2 1
```

If the row and column number are omitted, all comments are deleted.

GetComment Method

This method is used to retrieve the comment associated with a cell. For example, the following expression retrieves the comment associated with the cell at row 3, column 1.

```
☐←2 ☐NQ 'F.G' 'GetComment' 3 1
1 3 Hello 175 100
```

If there is no comment associated with the specified cell, the result is a scalar 1.

ShowComment Event/Method

If enabled, a Grid will generate a ShowComment event when the user rests the mouse pointer over a commented cell. You may use this event to modify the appearance of the comment dynamically.

You may display the comment associated with a particular cell under program control by generating a ShowComment event using DNQ. By default, a comment displayed under program control does not exhibit tip behaviour but remains visible until it is explicitly removed using the HideComment method.

Note that a comment will only be displayed if the specified cell is marked as a commented cell.

HideComment Event/Method

If enabled, a HideComment event is generated just before a comment window is hidden as a result of the user moving the mouse-pointer away from a commented cell.

Invoked as a method, HideComment is used to hide a comment that has previously been displayed by ShowComment. For example, the following expression hides the comment associated with the cell at row 2, column 1.

2 [NQ'F.G' 'HideComment' 2 1

ClickComment Event

If enabled, a ClickComment event is generated when the user clicks the mouse in a comment widow. The event message reports the co-ordinates of the cell. The result of a callback function (if any) is ignored.

CHAPTER 7

Multiple-Document (MDI) Applications

The multiple-document interface (MDI) is a document-oriented interface that is commonly used by word-processors, spreadsheets and other applications that deal with *documents*. An MDI application allows the user to display multiple documents at the same time, with each document displayed in its own window. Document windows are implemented as child forms that are contained within a parent form. When a child form is minimised, its icon appears on the parent form instead of on the desktop. An example MDI application is illustrated in Figure 8.1.

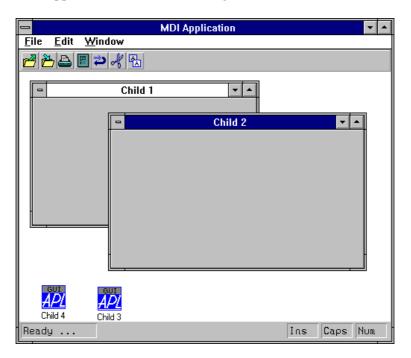


Figure 8.1 Child forms displayed within an MDIClient

In general, the parent form in an MDI application may also contain tool bars and status bars and potentially other objects. This means that not all of the internal area of the parent form is available. To allow for this and to distinguish MDI behaviour from that of simple child forms, Dyalog APL/W uses an MDIClient object.

The MDIClient object is a container object that effectively specifies the client area within the parent Form in which the SubForms are displayed. The MDIClient object also imposes special MDI behaviour which is quite different from that where a SubForm is simply the child of another Form.

By default, the MDIClient occupies the entire client area within its parent Form. This is the area within the Form that is not occupied by ToolBars and StatusBars. In most applications it is therefore not necessary to specify its Posn and Size properties, although you may do so if you want to reserve additional space in the parent Form for other objects.

To Create an MDI Application

- 1. Create a Form (this will be the parent form for the application).
- 2. Add MenuBar, ToolBar and StatusBar objects as appropriate as children of the parent Form.
- 3. Create an MDIClient object as a child of the parent Form.
- 4. Create the application's SubForms as children of the MDIClient, not as children of the parent Form.

MDI Behaviour

- All child forms are displayed within the MDIClient. Forms may be moved and
 resized but they are restricted to the MDIClient and will be clipped if they extend
 beyond it.
- When a child form is minimised, its icon appears on the MDIClient rather than on the desktop.

- When a SubForm is maximised, its Caption is combined with the Caption of the
 parent Form, i.e. the parent of the MDIClient object and is displayed in the parent
 Form's title bar. In addition, the SubForm's system menu and restore button are
 displayed in the parent Form's MenuBar.
- You cannot hide a SubForm. Setting its Visible property to 0 has no effect.
- A SubForm does not display its MenuBar. Instead, it is displayed in place of the parent Form's MenuBar when the SubForm has the focus.

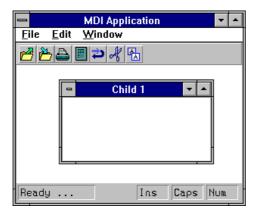


Figure 8.2 The effect of maximising a SubForm

Menus in MDI Applications

A feature of MDI behaviour is that SubForms do not display menu bars. However, if you create a MenuBar object for a SubForm, that object will be displayed as the menu bar of the parent Form whenever the SubForm has the focus. If there are no SubForms or if the SubForm with the focus does not own a MenuBar, the MenuBar of the parent Form is displayed. This mechanism provides one way of achieving the desired effect, namely that the menu bar displayed is appropriate for the type of document represented by the SubForm that has the focus. However, if you have a large number of SubForms of the same type (i.e. which share the same menu bar) you must defined identical MenuBar objects for all of them.

An alternative approach is to define separate MenuBar objects as children of the parent Form, only one of which is visible. Then you simply attach a callback function to the GotFocus event for each SubForm that makes the appropriate MenuBar visible. This approach means that you need only define MenuBar objects for each different *type* of SubForm, rather than for every one.

It is possible to mix these techniques, so that the MenuBar displayed is either the result of your callback function making it visible, or because a SubForm has its own MenuBar object defined and received the focus.

Note that when the user maximises a SubForm, its system menu button and restore button are displayed in the parent Form's menu bar. It is therefore essential that you ensure that your application provides such a menu bar at all times. Otherwise, when your user maximises a SubForm there is no way to reverse it.

Defining a Window Menu

Most MDI applications incorporate a Window menu. This is a special menu that displays the captions of all open SubForms as shown in Figure 8.3. The caption of the SubForm which currently has the focus is checked and the user can switch focus to another SubForm by selecting it from the Window menu.

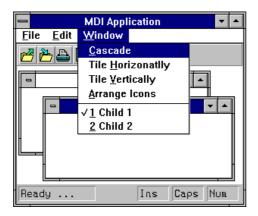


Figure 8.3 The Window menu

The task of updating the Window menu with the names of the SubForms is performed for you by Dyalog APL/W. You nominate the menu to be used for this purpose by setting the MDIMenu property of the appropriate MenuBar object. For example, if your MenuBar is called F1.MB and the menu you want to use as the Window menu is called F1.MB.WM, you would type the following:

```
'F1.MB' □WS 'MDIMenu' 'WM'
```

Notice that the name you specify is just the name of the menu itself, not its full pathname. If you have several MenuBars in your application, you must specify the MDIMenu property separately for each one.

Arranging Child Forms and Icons

Another common feature of MDI applications is that the user can ask for the SubForms to be displayed in a particular way, or that any SubForm icons are arranged in an orderly fashion. This is implemented in Dyalog APL/W by your application invoking an method using DNQ. The MDIClient recognises three different methods, namely MDICascade (110), MDITile (111) and MDIArrange (112).

The MDICascade method causes the child forms to be arranged in an overlapping manner. The MDITile method causes them to be tiled, either horizontally or vertically . Finally, the MDIArrange method arranges any child form icons in an orderly fashion. The most convenient way to provide these actions is to attach a Callback function to appropriate MenuItems. The callback function is called with different left arguments according to the MenuItem selected. The following code snippet illustrates this technique.

The following lines define callbacks for each of the MenuItem objects in the Menu F1.MB.WM. Each one uses the callback function MDI_ARRANGE, but with a left argument corresponding to the message that must be sent to the MDIClient to cause the desired action. For example, clicking the MenuItem named F1.MB.WM.Vert runs MDI_ARRANGE with a left argument of (111 1)

```
'F1.MB.WM.CASCADE'
                    □ws
                        'Event'
                                 30
                                    'MDI_ARRANGE'
                        'Event'
'F1.MB.WM.HORZ'
                                    'MDI_ARRANGE'
                    □WS
                                 30
                                                   (111 \ 0)
'F1.MB.WM.VERT'
                        'Event'
                                    'MDI_ARRANGE'
                    □WS
                                30
                                                   (111 1)
'F1.MB.WM.ARRANGE' □WS
                        'Event' 30
                                   'MDI_ARRANGE'
```

The MDI_ARRANGE function uses its left argument to construct a message for the MDIClient object, in this case F1.MDI, and returns it as a result. This causes the desired action.

```
▼ MSG←M MDI_ARRANGE MSG

[1] MSG←(c'F1.MDI'),M

▼
```

An alternative approach which does not require a callback function is to use **NQ**

```
'Event'
'Event'
                                            ''F1.MDI 110'''
'F1.MB.WM.CASCADE'
                    □ws
                                  30
                                     ' ±□NQ
                                     ' <u>▼</u> NQ
                                            ''F1.MDI 111 0'''
'F1.MB.WM.HORZ'
                    □ws
                                  30
                         'Event'
                                            ''F1.MDI 111 1'''
'F1.MB.WM.VERT'
                    □ws
                                  30
                                      Φ∐NQ
                                            ''F1.MDI 112
'F1.MB.WM.ARRANGE' □WS 'Event'
                                     30
```

CHAPTER 8

Docking

Introduction

Dyalog APL supports dockable Forms, SubForms, CoolBands and ToolControls.

If an object is dockable, the user may drag it to a different position within the same container, drag it out of its current container and drop it onto a different container, or drop it onto the desktop as a free-floating window. An undocked object can subsequently be redocked in its original container or in another.

For example, a SubForm can be dragged from one Form and docked into another. Or a CoolBand can be dragged out of its CoolBar and turned into a top-level Form on the desktop.

With the exception of ToolControls, when a dockable object is docked or undocked, the full Name and Type of the object change according to the following table.

	Parent Object						
Dockable	Form	SubForm	CoolBar	Root			
Object	F 1	F1.S1	F1.CB1	(.)			
Form	SubForm	SubForm	CoolBand	Form			
F2	F1.F2	F1.S1.F2	F1.CB1.F2	F2			
Form	SubForm	SubForm	CoolBand	Form			
F1.F2	F1.F2	F1.S1.F2	F1.CB1.F2	F1.F2			
SubForm	SubForm	SubForm	CoolBand	Form			
F2.S2	F1.S2	F1.S1.S2	F1.CB1.S2	S2			
CoolBand	SubForm	SubForm	CoolBand	Form			
F2.CB2.C2	F1.C2	F1.S1.C2	F1.CB1.C2	C2			

For example, a top-level Form F2 when docked in another top-level Form F1, becomes a SubForm named F2.F1.

Similarly, a CoolBand named F2.CB2.C2 when dragged from its CoolBar F2.CB2 and dropped over the desktop, becomes a top-level Form named C2.

Notice how the node name of the object remains the same, but its full pathname changes as it is moved from one parent object to another.

When an object changes Type in this way, the values of all its properties for its original Type are remembered, and these are automatically restored when the object reverts back to its original Type. Since an object can change Type between Form, SubForm, and CoolBand, it follows that there are effectively 3 different sets of properties associated with the object. However, only one set of properties (the set associated with the object's current Type) is visible and accessible (to the programmer) at any one time.

Docking Sequence of Events

An object (the client) may be docked in another object (the host) if the Dockable property of the client is set to 'Always' and the name of the client is included in the host object's DockChildren property. This property defines the list of names that the host will accept. Docking a Form or re-docking an already docked object behave in essentially the same way.

DockStart Event

The user picks up a client object by depressing the left mouse button over its title bar or client area and dragging. As soon as the mouse is moved, the object generates a DockStart event At this stage, the entire operation may be cancelled by a callback function on DockStart that returns 0.

Once a docking operation has begun, the outline of the object is displayed as a rectangle that moves with the mouse.

DockMove Event

When the client object is dragged over a suitable host object (one that will accept it as a child), the host object generates a series of DockMove events. Each DockMove event reports the edge along which the client object will be docked, namely Top, Bottom, Left, Right or None, and a corresponding rectangle.

When the mouse pointer approaches an edge of the host, the rectangle changes to describe a docking zone indicating where the object will be docked in the host.

A callback function on DockMove that returns 0 will prevent the outline rectangle changing to indicating a docking zone and will prevent the client from being docked.

A callback function on DockMove can also return a result that modifies the position and size of the rectangle that is actually displayed for the user. This in turn will affect the zone occupied by the client when it becomes docked. For example, you can use this to control its size.

DockRequest Event

When the user releases the mouse pointer, the client object generates a DockRequest event. A callback function on DockRequest may return 0 to abort the operation, or may modify the requested docking zone in the host. In the case of a ToolControl, the callback is used to action the docking operation.

DockAccept Event

In response to a successful DockRequest event, the host object generates a DockAccept event. A callback on DockAccept may also be used to abort the operation or to modify the docking zone. The DockAccept event reports the new name for the client object which it will assume as a child of the host.

Furthermore, if the DockAccept callback actions the event before completing, the docking operation will take place immediately, rather than being deferred until the callback has completed. This allows you to set properties on the newly docked object.

DockEnd Event

Finally, the docked client object (whose name has now changed) will generate a DockEnd event. This is reported for information only and a DockEnd callback function cannot cancel or modify the docking operation. The DockEnd event may however be used to set properties for the newly docked client.

If the user releases the mouse elsewhere than over an accepting host object, the DockEnd event is reported by the client object itself. If appropriate, this will be followed by a Configure event and the client will simply move to a new location without changing its docking status.

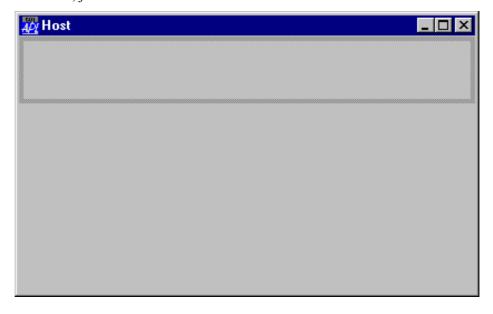
DockCancel Event

If at any stage the user presses the Esc key, the operation is aborted and the client object generates a DockCancel event.

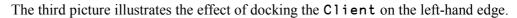
Docking a Form inside another

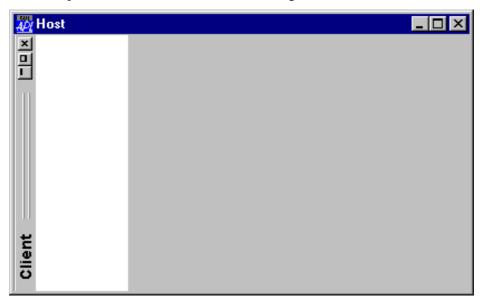
The following example illustrates the effect of docking one Form in another.

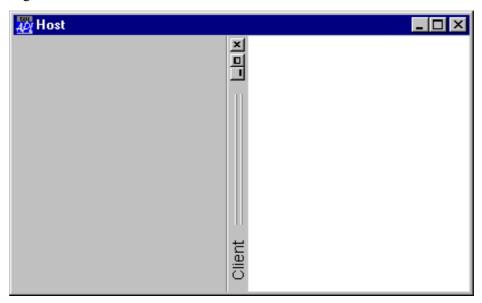
```
'Host' □WC 'Form' 'Host' ('Size' 30 40)
Host.DockChildren÷'Client'
```



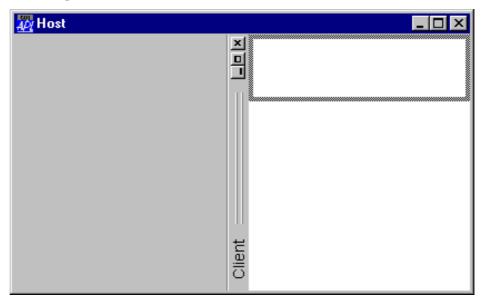
'Client' □WC 'Form' 'Client' ('Size' 20 20) Client.Dockable←'Always'


Notice that a dockable Form is indistinguishable in appearance between any other top-level Form except that it has additional items in its pop-up context (right mouse button) menu as shown.

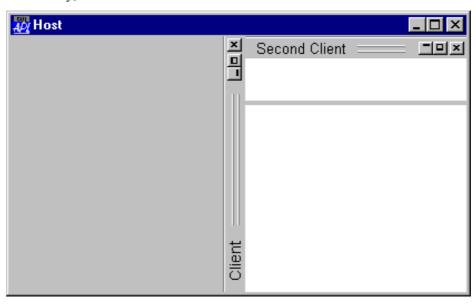

The following picture shows the effect of dragging the Client Form to the top edge of the Host, just before the mouse button is released.


The next picture shows the result after docking. The Client Form has become a SubForm (white is the default background colour for a SubForm) called Host.Client.

The following picture shows the Client Form docked as a SubForm along the right edge of the Host Form.

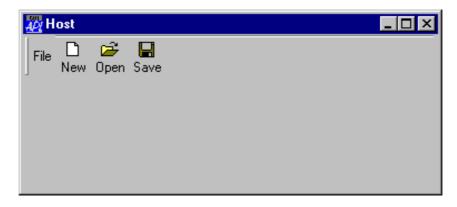


'Client2' □WC 'Form' 'Second Client' ('Size' 20 20) Client2.Dockable←'Always'



which we can make dockable in both the Host Form and the Host.Client SubForm:

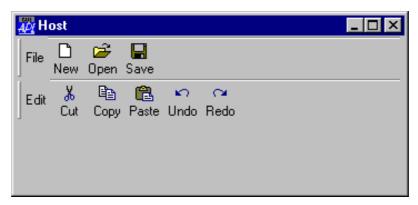
Host.DockChildren Host.Client.DockChildren←'Client2' The next picture shows Client2 about to be docked in the Client SubForm:


And finally, after it has been docked.

Docking a Form into a CoolBar

The following example illustrates the effect of docking a Form into a CoolBar.

```
\nabla FormToCoolBand
          'il'□WC'ImageList'('Masked' 0)('MapCols' 1)
'il.'□WC'Bitmap'('ComCtl32' 120)A STD_SMALL
[1]
[2]
[3]
[4]
          'host'□WC'Form' 'Host'
[5]
         host.Coord←'Pixel'
[6]
         host.Size←140 350
[7]
          'host.cb'□WC'CoolBar'
[8]
         host.cb.DockChildren←'file' 'edit'
[9]
          :With 'host.cb.file'□WC'CoolBand'
[10]
               Caption←'File'
[11]
[12]
               Dockable←'Always'
               'tb'□WC'ToolControl'('ImageListObj' '#.il')
[13]
               'tb.b1' WC'ToolButton' 'New'('ImageIndex' 7)'tb.b2' WC'ToolButton' 'Open'('ImageIndex' 8)'tb.b3' WC'ToolButton' 'Save'('ImageIndex' 9)
[14]
[15]
[16]
[17]
          :EndWith
[18]
```



```
[19]
             :With 'edit' WC'Form' 'Edit'
[20]
                     Size←100 200
                     Dockable←'Always'
[21]
[22]
                     Coord+'Pixel'
                     'tb'□WC'ToolControl'('ImageListObj' '#.il')
'tb.b1'□WC'ToolButton' 'Cut'('ImageIndex' 1)
[23]
[24]
                                                                 'Copy'('ImageIndex' 2)
'Paste'('ImageIndex' 3)
'Undo'('ImageIndex' 4)
'Redo'('ImageIndex' 5)
                     'tb.b2' WC'ToolButton'
'tb.b3' WC'ToolButton'
'tb.b4' WC'ToolButton'
'tb.b5' WC'ToolButton'
[25]
[26]
[27]
[28]
[29]
             :EndWith
```


The following picture shows the effect of dragging the client Form to the CoolBar in the host, just before the mouse button is released.

The next picture shows the result after docking. The client Form has become a CoolBand called host.cb.edit.

Undocking a SubForm or a CoolBand

When a SubForm or a CoolBand is undocked, it becomes a Form.

The object may either become a Form that is a child of Root, or a Form that remains the child of the Form from where it was undocked. Such an object will always appear *on top of* its parent, even when undocked.

This behaviour is controlled by the UndocksToRoot Property

Note that a Form or a CoolBand object may be undocked if its Dockable property is set to 'Always'; the DockChildren property does not apply to the Root object.

The Root object does not provide DockMove events, but the docked object will generate a DockRequest event when the user releases the mouse button over the desktop. This may be used to disable or modify the operation.

Docking and Undocking a ToolControl

Docking and undocking a ToolControl is handled rather differently from docking and undocking a Form or CoolBand.

When you undock a ToolControl from a Form or SubForm, it cannot remain a ToolControl object, because a ToolControl cannot be a child of Root. Furthermore, its Type cannot simply change to Form because a Form cannot be a parent of a ToolButton. In fact, a ToolButton may **only** be the child of a ToolControl.

Therefore, when a dockable ToolControl is undocked, no action is taken; you have to perform the various operations yourself.

Typically, you would create a new Form to contain the ToolControl and only the ToolControl), and then delete the original.

The new Form should be dockable in the original parent (of the ToolControl), but a callback should intercept this operation and re-instate the ToolControl as a direct child of the host.

Effectively, when you undock a ToolControl, you need to insert a new (floating) Form between the Host Form and the ToolControl. Then when you re-dock it, you need to remove the (floating) Form from the hierarchy.

The following example illustrates the procedure.

The following function creates a Form containing a dockable ToolControl. The ToolControl can be undocked, becoming a floating toolbar, and then docked back into the original Form.

```
▼ DockableToolControl
            'IL'□WC'ImageList'('Masked'
'IL.'□WC'Bitmap'('ComCt132'
:With 'Host'□WC'Form' 'Host'
[1]
[2]
                                                              120)A STD_SMALL
[3]
                   Coord+'Pixel'
[4]
                   Size←50 300
[5]
[6]
                   DockChildren←'Floater'
                   onDockAccept←'#.DOCK
[7]
                   onDockMove←'#.DOCKMOVE'
:With 'TC'□WC'ToolControl'
Dockable←'Always'
[8]
 9]
[10]
                          onDockRequest←'#.UNDOCK'
[11]
                          ImageListObj+'#.IL'
'B1'□WC'ToolButton' 'New'('ImageIndex' 7)
'B2'□WC'ToolButton' 'Open'('ImageIndex' 8)
'B3'□WC'ToolButton' 'Save'('ImageIndex' 9)
[12]
[13]
[14]
[15]
[16]
                   :EndWith
[17]
            :EndWith
```

The picture below shows the initial appearance of the **Host** Form and its ToolControl.

Because the ToolControl is dockable, the user may pick it up and drag it out of its parent Form as shown below.

When the user drops the ToolControl outside the Host Form, it (the ToolControl) generates a DockRequest event which is attached to the UNDOCK callback function. This function, creates a new Form called Floater, makes a copy of the ToolControl as a child of Floater, and then expunges the original ToolControl from the Host Form. The function, and the results of the operation, are shown below. The following points should be noted.

- The UNDOCK callback returns 0 to prevent APL from taking any further action (the default action after a successful DockRequest is to generate a DockAccept event, which in this case is undesirable).
- The Floater Form is created as a child of the Host Form so that it always floats above it in the window stacking order.
- The Floater Form is made dockable so that it can be re-docked back into Host.
- The (new) ToolControl is made non-dockable, so that the user cannot drag it out of Floater.

```
▽ R←UNDOCK MSG
       R←0
[2]
       :With 'Host.Floater'□WC'Form'
            Caption←'Floating ToolControl'
[3]
           Dockable←'Always
[4]
[5]
            Coord←'Pixel
[6]
            'TC'□WC>MSG
[7]
            TC.Dockable←'Never'
[8]
            Size←TC.Size
           Posn←#.Host.Posn+2↑7⊃MSG
[9]
[10]
       :EndWith
[11]
       □EX'#.Host.TC'
```


The user may dock the ToolControl back into Host by dragging the Floater Form into it.

The DOCKMOVE callback function, shown below, prevents the ToolControl (represented by its parent Floater) from being docked anywhere except along the top edge.

```
∇ R←DOCKMOVE MSG
[1] A Only allow docking along Top edge
[2] R←MSG[4]ε'Top' 'None'

∇
```

The picture below illustrates the moment just before the user releases the mouse button to dock Floater back into Host.

At this point, the Host Form generates a DockAccept event and the callback function DOCK is invoked. This function recreates the ToolControl as a child of Host (making it dockable once more), and then expunges the Floater Form.

```
▼ R←DOCK MSG

[1] R←0

[2] :With >MSG

[3] 'TC'□WC □OR(3>MSG).TC

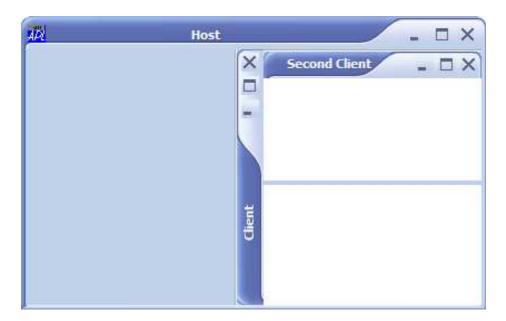
[4] TC.Dockable←'Always'

[5] :EndWith

[6] □EX'#.Host.Floater'
```

Once again, the result of the callback function is 0 to tell APL that you have dealt with the situation and it is to take no further action.

XP Look and Feel


Windows XP Look and Feel is an optional feature of Windows XP and other advanced versions of Windows.

Under XP, it may be enabled from the *Appearance* tab of the *Display Properties* dialog box, by choosing *Windows XP style*.

If XP Look and Feel is enabled, APL will optionally display the title bars of docked windows using the appropriate XP style. You can control this behaviour using the XPLookAndFeelDocker parameter (see User Guide, Chapter 2).

If XPLookAndFeelDocker is 1, APL will display docked window title bars using the appropriate XP style. If XPLookAndFeelDocker is 0 (the default), it will not.

The picture below illustrates how the first example in this chapter appears when XP Look and Feel is enabled, XPLookAndFeelDocker is 1, and a special Windows XP Theme is in use.

CHAPTER 9

TCP/IP Support

Introduction

The TCPSocket object provides an event-driven interface to the WinSock network API, which itself is an implementation of TCP/IP for Microsoft Windows.

The TCPSocket object allows you to communicate with other TCP/IP applications running on any computer in your network, including the World Wide Web.

It also provides the mechanism for client/server operation between two Dyalog APL workspaces.

From Version 12.0, a new tool called Conga is the recommended mechanism for connecting to the internet. The code samples in this chapter have not been ported to the Unicode Edition, but continue to work in Classic Editions. For information on accessing the internet and other TCP services in the Unicode Edition, see the *Conga User Guide*.

Two types of TCP/IP connections are possible; Stream and UDP. Stream connections are by far the most commonly used, but both types are supported by Dyalog APL.

Stream Sockets

A Stream socket is a connection-based transport that is analogous to a telephone service. A Stream socket handles error correction, guarantees delivery, and preserves data sequence. This means that if you send two messages to a recipient, the messages are sure to arrive and in the sequence that you sent them. However, individual messages may be broken up into several packets (or accumulated into one), and there is no predetermined protocol to identify message boundaries. This means that Stream-based applications must implement some kind of message protocol that both ends of a connection understand and adhere to.

User Datagram Protocol (UDP)

User Datagram Protocol (UDP) is a connection-less transport mechanism that is somewhat similar to a postal service. It permits a sending application to transmit a message or messages to a recipient. It neither guarantees delivery nor acknowledgement, nor does it preserve the sequence of messages. Messages are also limited to fit into a single packet which is typically no more than 1500 bytes in size. However, a UDP message will be delivered in its entirety.

You may wonder why anybody would use a service that does not guarantee delivery. The answer is that although UDP is technically an unreliable service, it is perfectly possible to implement reliable applications on top of it by building in acknowledgements, time-outs and re-transmissions.

Clients and Servers

A Stream based TCP/IP connection has two endpoints one of which is called the *server* and the other the *client*. However, this distinction is only relevant in describing how the connection is made.

The server initiates a connection by creating a socket which is identified by its (local) IP address and port number. The server is effectively making its service available to any client that wishes to connect. Notice that the server does not, at this stage, specify in any way which client or clients it will accept.

A client connects to a server by creating its own socket, specifying the IP address and port number of the service to which it wishes to connect.

Once the connection is established, both ends are capable of sending and receiving data and the original client/server relationship need no longer apply. Nevertheless, certain protocols, such as HTTP, do maintain the client/server model for the duration of the connection.

APL as a TCP/IP Server

A Stream based APL server initiates a connection by creating a TCPSocket object whose SocketType is 'Stream' (the default).

The service is uniquely identified on the network by the server's IP Address and port number which are specified by the LocalAddr and LocalPort properties respectively. Note that unless you have more than one network adapter in your computer, LocalAddr is normally allowed to default.

This TCPSocket object effectively defines the availability of a particular service and at this stage is known as a *listening socket* which is simply waiting for a client to connect. This is reflected by the value of its CurrentState property which is 'Listening'.

For example:

```
'SO'□WC'TCPSocket' ('LocalPort' 2001)
'SO'□WG'CurrentState'
Listening
```

When a client connects to the APL server, the state of the TCPSocket object (which is reported by the CurrentState property) changes from 'Listening' to 'Connected' and it generates a TCPAccept event. Note that the connection cannot be nullified by the return value of a callback function attached to this event.

At this point, you can identify the client by the value of the RemoteAddr property of the TCPSocket object. If you wish to reject a particular client, you must immediately expunge the (connected) TCPSocket and then create a new one ready for another client.

Serving Multiple Clients

Dyalog APL provides a special mechanism to enable a single server to connect to multiple clients. This mechanism is designed to accommodate the underlying operation of the Windows socket interface in the most convenient manner for the APL programmer.

What actually happens when a client connects to your server, is that Windows automatically creates a new socket, leaving the original server socket intact, and still listening. At this stage, APL has a single name (the name of your TCPSocket object) but two sockets to deal with.

As it would be inappropriate for APL itself to assign a new name to the new socket, it disassociates the TCPSocket object from its original socket handle, and re-associates it with the new socket handle. This is reflected by a corresponding change in its SocketNumber property. The original listening socket is left, temporarily, in a state where it is not associated with the name of any APL object.

Having performed these operations, APL checks to see if you have attached a callback function to the TCPAccept event. If not, APL simply closes the original listening socket. This then satisfies the simple case where the server is intended to connect with only a single client and your socket has simply changed its state from 'Listening' to 'Connected'.

If there *is* a callback function attached to the TCPAccept event, APL invokes it and passes it the window handle of the listening socket. What the callback must do is to create a new TCPSocket object associated with this handle. If the callback exits without doing this, APL closes the original listening socket thereby preventing further clients from connecting.

If you wish to serve multiple clients, you must continually allocate new TCPSocket objects to the listening socket in this way so that there is always one available for connection

The following example illustrates how this is done. Note that when the callback creates the new TCPSocket object, you **must not** specify any other property except SocketNumber, Event and Data in the **DWC** statement that you use to create it. This is important as the objective is to associate your new TCPSocket object with the original listening socket whose IP address and port number must remain unaltered.

Example

The original listening socket is created with the name \$0 and with a callback function ACCEPT attached to the TCPAccept event. The COUNT variable is initialised to 0. This variable will be incremented and used to generate new names for new TCPSocket objects as each client connects.

```
COUNT←0
'S0'□WC'TCPSocket' ('LocalPort' 2001)
('Event' 'TCPAccept' 'ACCEPT')
```

Then, each time a client connects, the ACCEPT function clones the original listening socket with a sequence of new TCPSocket objects using the name \$1, \$2, and so forth.

```
∇ ACCEPT MSG
[1] COUNT+←1
[2] ('S', ₹COUNT) WC 'TCPSocket'('SocketNumber'(3>MSG))

∇
```

APL as a TCP/IP Client

A Stream based APL client makes contact with a server by creating a TCPSocket object whose SocketType is 'Stream' (the default), specifying the RemoteAddr and RemotePort properties which identify the server's IP Address and port number respectively. Note that the client must know the identity of the server in advance.

For example:

If the values of the RemoteAddr and RemotePort properties match the IP address and port number of any listening socket on the network, the association is made and the client and server sockets are connected.

When the connection succeeds, the state of the client TCPSocket object (which is reported by the CurrentState property) changes from 'Open' to 'Connected' and it generates a TCPConnect event. Note that the connection cannot be nullified by the return value of a callback function.

Host and Service Names

Although basic TCP/IP sockets must be identified by IP addresses and port numbers, these things are more commonly referred to by host and service names.

For example, the AltaVista web search engine is more easily identified and remembered by its name www.altavista.com than by any one of its IP addresses.

Port numbers are also often referred to by service names which are more convenient to remember. Furthermore, port numbers, even the so-called *well-known port numbers*, sometimes change, and your application will be more robust and flexible if you use names rather than hard-coded port numbers.

The WinSock API provides functions to resolve host names to IP addresses and service names to port numbers and these facilities are included in the Dyalog APL TCP/IP support.

Name resolution, in particular the resolution of host names, is performed *asynchronously*. This means that an application requests that a name be resolved, and then receives a message some time later reporting the answer. The asynchronous nature of name resolution is reflected in the way it is handled by Dyalog APL. Note that in certain cases, the resolution of a host name may take several seconds.

Each of the properties LocalPort, RemotePort, LocalAddr and RemoteAddr has a corresponding *name* property, i.e. LocalPortName, RemotePortName, LocalAddrName and RemoteAddrName. When you create a TCPSocket object, you may specify one or the other, but not both. For example, wherever you would use RemoteAddr, you may use RemoteAddrName instead.

If you use a *name* property, when you create a TCPSocket object, the TCPSocket will raise a TCPGotAddr or TCPGotPort event when the name is resolved to an IP address or a port number respectively. There is no need to take any action when these events are raised, so there is no specific need to attach callback functions. However, it may be useful to do so in order to track the progress of the requested connection.

The use of RemoteAddrName and TCPGotAddr is illustrated by the BROWSER.QUERY function that is described in the next Chapter.

Sending and Receiving Data

Once your TCPSocket object is connected, you can send and receive data. It makes no difference whether it was originally a server or a client; the mechanisms for data transfer are the same.

The *type* of data that you can send and receive is defined by the Style property which was established when you created the TCPSocket object. The default Style is 'Char' which allows you to send and receive character vectors. Conversion to and from your **DAV** is performed automatically.

If you choose to set Style to 'Raw', you can send and receive data as integer vectors whose values are in the range -127 to 255. This allows you to avoid any character translation.

If you set Style to 'APL', you may transmit and receive arbitrary arrays, including arrays that contain <code>OR</code>'s of namespaces. Furthermore, however the data is actually fragmented by TCP/IP, an array transmitted in this way will appear to be sent and received in single atomic operation. Data buffering is handled automatically by APL itself. Style 'APL' is normally only appropriate for communicating between two Dyalog APL sessions. Note however, that there is no mechanism to ensure that both ends of the connection use the same Style.

To send data, you execute the TCPSend method. For example, the following expression will transmit the string "Hello World" to the remote task connected to the TCPSocket object \$0:

To receive data, you must attach a callback function to the TCPRecv event. Note that for a Stream connection you are not guaranteed to receive a complete message as transmitted by the sender. Instead, the original message may be received as separate packets or several messages may be received as a single packet. This means that you must perform your own buffering and you must implement a specific protocol to recognise message boundaries.

Output Buffering

When you use TCPSend to transmit a block of data, APL copies the data into a buffer that it allocates *outside* your workspace from Windows memory. APL then asks TCP/IP to send it

However, the amount of data that can be transmitted in one go is limited by the size of various TCP/IP buffers and the speed of the network. Unless the block is very small, the data must be split up and transmitted bit by bit in pieces. This process, which is handled by APL in the background, continues until the entire data block has been transmitted. It could be several seconds or even minutes after you execute TCPSend before the entire block of data has been sent from your PC.

If in the meantime you call TCPSend again, APL will allocate a second buffer in Windows memory and will only try to send the second block of data when all of the first block has been transmitted.

If you call TCPSend repeatedly, APL will allocate as many buffers as are required. However, if you attempt to send too much data too quickly, this mechanism will fail if there is insufficient Windows memory or disk space to hold them.

If you need to transmit a very large amount of data, you should break it up into chunks and send them one by one. Having sent the first chunk, you can tell when the system is ready for the next one using the TCPReady event. This event is reported when the TCP/IP buffers are free *and* when there is no data waiting to be sent in the internal APL buffers. You should therefore attach a callback, whose job is to send the next chunk of data, to this event.

Note that a further level of buffering occurs in the *client* if the Style property of the TCPSocket is set to 'APL'. This is done to prevent the partial reception of an APL array which would represent an invalid data object.

User Datagram Protocol (UDP) and APL

You may communicate with another application with User Datagram Protocol (UDP) by creating a TCPSocket object whose SocketType is 'UDP'. For two APL applications to exchange data in this way, each one must have a UDP TCPSocket.

You make a UDP socket by creating a TCPSocket object, specifying the LocalAddr and LocalPort properties, and setting the SocketType to 'UDP'. Unless your computer has more than one network card (and therefore more than one IP address), it is sufficient to allow LocalAddr to assume its default value, so in practice, only the port number is required. For example:

```
'SO' □WC 'TCPSocket' ('LocalAddr' '') 2001
('SocketType' 'UDP')
'SO'□WG'CurrentState'
Bound
```

Once you have created a UDP TCPSocket, it is ready to send and receive data.

To send data to a recipient, you use the TCPSend method, specifying its RemoteAddr and RemotePort. The data will only be received if the recipient has a UDP socket open with the corresponding IP address and port number. However, note that there is no *absolute guarantee* that the recipient will ever get the message, nor, if you send several messages, that they will arrive in the order you sent them.

For example, the following statement might be used to send the character string 'Hello' to a UDP recipient whose IP address is 123.456.789.1 and whose port number is 2002:

```
2 DNQ 'SO' 'TCPSend' 'Hello' '123.456.789.1' 2002
```

Note that the maximum length of a UDP data packet depends upon the type of your computer, but is typically about 1500 bytes.

To receive data from a UDP sender, you must attach a callback to the TCPRecv event. Then, when the data is received, your callback function will be invoked. The event message passed as the argument to your callback will contain not only the data, but also the IP address and port number of the sender.

For example, if you created a TCPSocket called \$1 as follows:

```
'S1' □WC 'TCPSocket' ('LocalAddr' '') 2002
('SocketType' 'UDP')
('Event' 'TCPRecv' 'RECEIVE')
```

Where the callback function RECEIVE is as follows:

```
▼ RECEIVE MSG
[1] DISPLAY MSG
▼
```

the following message would be displayed in your Session when the message 'Hello' was received from a sender whose IP address is 193.32.236.43 and whose port number is 2001

Client/Server Operation

We have seen how Dyalog APL may act as a TCP/IP server and as a TCP/IP client. It follows that full client/server operation is possible whereby an APL client workspace can execute code in an APL server workspace on the same or on a different computer.

A deliberately simple example of client/server operation is provided by the workspace samples\tcpip\rexec.dws whose operation is described below.

A more complex example, which implements a client/server APL component file system, is illustrated by the samples\tcpip\qfiles.dws workspace. See DESCRIBE in this workspace for details.

REXEC contains a small namespace called SERVER.

To start a server session, start Dyalog APL, and type:

```
)LOAD REXEC SERVER.RUN
```

To use the server from an APL client, start Dyalog APL (on the same computer or on a different computer), and type:

```
)LOAD REXEC
IP SERVER.EXECUTE expr
```

where IP is the IP Address of the server computer and expr is a character vector containing an expression to be executed.

If you are testing this workspace using two APL sessions on the same computer, you can use either '127.0.0.1' or the result of the expression (2 $\square NQ$ '.' 'TCPGetHostID') for IP. This expression simply obtains the IP Address of your computer. Note however, that you **do** have to have an IP Address for this to work.

The RUN function

```
▼ RUN; CALLBACKS

[1]
[2]
[3]
[4]
          □EX↑'TCPSocket'□WN''
          CALLBACKS←c('Event' 'TCPAccept' 'ACCEPT')
CALLBACKS,←c('Event' 'TCPRecv' 'RECEIVE')
          COUNT←0
           SO' WC'TCPSocket' ''PORT('Style' 'APL'), CALLBACKS
[5]
RUN[1]
                 expunges all TCPSocket objects that may be already defined. This is
                 intended only to clear up after a potential error.
RUN[2-3]
                 set up a variable CALLBACKS which associates various functions with
                 various events.
RUN[4]
                 initialises a variable COUNT which will be incremented and used to
                 name new TCPSocket objects as each client connects. COUNT is
                 global within the SERVER namespace.
RUN[5]
                 creates the first TCPSocket server using your default IP address and
                 the port number specified by the PORT variable (5001). Note that the
                 Style property is set to 'APL' so that data is transmitted and
                 received in internal APL format. Furthermore, however each message
                 gets fragmented by TCP/IP, it will always appear to be sent and
                 received in an atomic operation. There is no need for the client to do
                 any buffering.
```

Once the server has been initiated, the next stage of the process is that a client makes a connection. This is handled by the ACCEPT callback function.

The ACCEPT function

```
▼ ACCEPT MSG;SOCK;EV

[1] COUNT←COUNT+1

[2] SOCK←'SocketNumber'(3>MSG)

[3] EV←'Event'((>MSG)[WG'Event')

('S', **COUNT)[WC'TCPSocket'SOCK EV
```

The ACCEPT function is invoked when the TCPAccept event occurs. This happens when a client connects to the server.

Its argument MSG, supplied by APL, is a 3-element vector containing:

MSG[1]	The name of the TCPSocket object
MSG[2]	The name of the event ('TCPAccept')
MSG[3]	The socket handle for the original listening socket

increments the COUNT variable. This variable is global to the SERVER namespace and was initialised by the RUN function.

makes a new TCPSocket object called Sxx, where xx is the new value of COUNT. By specifying the socket handle of the original listening socket as the value of the SocketNumber property for the new object, this effectively clones the listening socket. Note that the cloned socket inherits 'Style' 'APL'. For further discussion of this topic, see Serving Multiple Clients.

The RECEIVE function

```
V RECEIVE MSG;RSLT

[1] :Trap 0

[2] RSLT←O('#'±(3>MSG))

[3] :Else

[4] RSLT←□EN

[5] :EndTrap

[6] 2 □NQ(>MSG)'TCPSend'RSLT
```

The RECEIVE function is invoked when the TCPRecv event occurs. This happens whenever an APL array is received from a client. Note that it is guaranteed to receive an entire APL array in one shot because the Style property of the TCPSocket object is set to 'APL'.

Its argument MSG, supplied by APL, is a 5-element vector containing:

```
MSG[1] The name of the TCPSocket object
MSG[2] The name of the event ('TCPRecv')
MSG[3] The data
MSG[4] IP address of the client
MSG[5] Port number of the client
```

RECEIVE[1-5] executes the expression (3>MSG) received from the client. Assuming it succeeds, RSLT is a 2-element vector containing a zero followed by the result of the expression. If the execute operation fails for any reason, RSLT is set to the value of DEN (the error number).

RECEIVE[6] transmits the result back to the client.

The EXECUTE function

```
▼ RSLT←SERVER_IP EXECUTE EXPR;P;SOCK
[1]
      A Execute expression in server
[2]
[3]
      P←c'TCPSocket'
[4]
      P,←c'RemoteAddr'SERVER IP A IP Address
[5]
      P,←c'RemotePort'PORT
                                  A Port Number
      P,←c'Style' 'APL'
[6]
      P,←c'Event'('TCPRecv' 1)('TCPClose' 1)('TCPError' 1)
[7]
      'ŚOCK'□WC P
[8]
[9]
[10]
      2 □NQ'SOCK' 'TCPSend'EXPR ♦ RSLT←□DQ'SOCK'
[11]
[12]
      :Select 2>RSLT
      :Case 'TCPRecv'
[13]
[14]
           RSLT+3⊃RSLT
[15]
            :If O=⊃RSLT
               RSLT+2⊃RSLT
[16]
            :Else
[17]
               ('Server: ', □EM RSLT) □SIGNAL RSLT
[18]
[19]
           :EndIf
[20]
      :Case 'TCPError'
[21]
          ('Server Error: ',, ☐FMT 2↓RSLT) ☐SIGNAL 201
[22]
      :Else
[23]
           'Unknown Server Error'□SIGNAL 201
[24]
      :EndSelect
```

This function is executed by a client APL session. Its right argument is a character vector containing an expression to be executed. Its left argument is the IP Address of a server APL session in which the expression is to be run. The server session may be running on the same computer or on a different computer on the network.

EXECUTE [3-8] makes a client TCPSocket object called SOCK for connection to the specified server IP address and port number PORT. Note that the Style property is set to 'APL' so that data is transmitted and received in internal APL format. Furthermore, however each message gets fragmented by TCP/IP, it will always appear to be sent and received in an atomic operation. There is no need for the client to do any buffering.

The Event property is set so that events TCPRecv, TCPClose and TCPError will terminate the DQ. In this case, this is easier than using callback functions.

EXECUTE[10] transmits the expression to the server for execution and then \(\backslash DQ\) the socket. As the only events enabled on the socket are TCPRecv, TCPClose and TCPError it effectively waits for one of these to occur. When one of these events does happen, the \(\backslash DQ\) terminates, returning the corresponding event message as its result.

The reason for using a diamond expression is to ensure that the TCPRecv, TCPClose or TCPError event will not be fired before the DQ was called.

A second point worth noting is that the TCPSend request is automatically queued until the socket gets connected. In this case, there is no need to trigger the TCPSend from a callback on the TCPConnect event.

EXECUTE[12-] process the TCPRecv, TCPClose or TCPError event that was generated by the socket. If the operation was successful, RSLT[2] contains 'TCPRecv' and RSLT[3] contains a zero followed by the result of the expression.

CHAPTER 10

APL and the Internet

Introduction

This chapter describes the use of TCPSocket objects to access the internet. From Version 12.0, a new tool called Conga is the recommended mechanism for connecting to the internet. The code samples in this chapter have not been ported to the Unicode Edition, but continue to work in Classic Editions. For information on accessing the internet and other TCP services in the Unicode Edition, see the *Conga User Guide*.

A complete description of how Web browsers and servers work is beyond the scope of this document. Nevertheless, the following basic introduction should prove a useful introduction before trying to write a server or client application in Dyalog APL.

A Web server is simply a TCP/IP server that adheres to a particular protocol known as Hypertext Transfer Protocol (HTTP). Every request for a document from a Web browser to a Web server is a new connection. When a Web browser requests an HTML document from a Web server, the connection is opened, the document transferred, and the connection closed.

The Web server advertises its availability by opening a Stream socket. Conventionally, it uses Port Number 80 although other port numbers may be used if and when required.

A client (normally referred to as a *browser*) connects to a server and immediately sends it a *command*. A command is a text string containing sub-strings separated by CR,LF pairs and terminated by CR,LF (an empty line). This terminator is an **essential** part of the protocol as it notifies the server that the entire command has been received. An example of a command sent by Netscape Navigator 3.0 Gold is:

```
GET / HTTP/1.0<CR, LF>
Proxy-Connection: Keep-Alive<CR, LF>
User-Agent: Mozilla/3.0Gold (Win95; I) <CR, LF>
Host: pete.dyalog.com<CR, LF>
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*<CR, LF>
<CR, LF>
```

The first line of the command is a statement that tells the server what the client wants. The simplest statement is of the form GET <url>, which instructs the server to retrieve a particular document. In the example, <url> is "/" which is a relative Universal Resource Locator (URL) that identifies the home page of the current server. The client may also specify the level of http protocol that it understands as a second parameter. In the above example, the client is requesting HTTP version 1.0. Subsequent statements provide other information that may be useful to the server.

The server receives the command, actions it, and then sends back the result; in this case, the content of the Web page associated with the given URL. Using the original HTTP version 1.0 protocol, the server then **closes** the TCP/IP socket. This act informs the client that all of the data has been received and that the entire transaction is complete.

Today's web servers commonly use HTTP 1.1 which supports persistent connections. This means that the socket may not be closed, but is instead left open (for a time) for potential re-use. This behaviour is specified by *Connection: Keep-Alive HTTP headers* which are beyond the scope of this discussion. However, to support persistent connections, even the simplest client must be able to detect that the transaction is complete in some other way. A simple solution, as implemented in the BROWSER.QUERY function, is to look for the HTML end-tag.

The protocol can therefore be summarised as:

- a) Client connects to server
- b) Client sends command (terminated by CR,LF)
- c) Server sends requested data to client
- d) Server disconnects from client (HTTP 1.0 only)

A Web page normally contains text and embedded hyperlinks which connect it to other WWW pages. When the user activates a hyperlink, the browser connects to the corresponding server and requests the relative URL.

However, if you are using a secure proxy server, as most corporate users do, the browser connects repeatedly to your proxy (rather than to specific servers) and requests the *absolute* URL (which contains the name of the server) instead.

Writing a Web Client

A sample Web client is provided in the BROWSER namespace in the workspace samples\tcpip\www.dws.

Before you can use BROWSER.QUERY you must be connected to the Internet. See APL and the Internet for details.

The main function is BROWSER.QUERY. This function is intended to be used in one of two ways:

Using a Proxy Server

If you are connected to the Internet through a secure proxy server or *firewall* (as is common in many commercial organisations), you may **only** connect to your firewall; you cannot connect directly to any other server. Effectively, the **only external** IP address to which you may connect a TCPSocket as a client is the IP address of your firewall.

In this case, you should set the values of the variables BROWSER.IP_ADDRESS and BROWSER.PORT_NUMBER to the IP address and port number of your firewall.

The right argument to BROWSER.QUERY is a character string that includes the name of the web site or server as part of the query. For example, the following statement will retrieve the Microsoft home page:

BROWSER.QUERY'GET http://www.microsoft.com/'

Using a Direct Connection

If you are directly connected to the Internet or you use dial-up networking to connect to an Internet provider, you may create TCPSocket objects that are directly connected to any server on the Internet.

In this case, the *left* argument to the function is the address and port number of the server to which you wish to connect (the port number is optional and defaults to 80). The *right* argument is the command that you wish the server to execute. Furthermore, the address may be expressed as the *IP address* of the server or as the *name* of the server.

For example, to obtain the Microsoft home page:

```
'207.46.192.254'BROWSER.QUERY'GET /'
or
'www.microsoft.com'BROWSER.QUERY'GET /'
```

The result of the query is not returned by the BROWSER.QUERY function, but is instead obtained from the server *asynchronously* by callback functions and then deposited in the variable BROWSER.HTML. In this example, the call-backs report the progress of the transaction as shown below. This approach is perhaps unusual in APL, but it perfectly illustrates the event-driven nature of the process.

Using a Firewall

```
BROWSER.QUERY 'GET http://www.microsoft.com'
Connected to 193.32.236.22
... Done
Received 39726 Bytes
Response is in:
#.BROWSER.HTML
```

Using a Direct Connection

```
'www.microsoft.com' BROWSER.QUERY 'GET /'
www.microsoft.com resolved to IP Address 207.46.192.254
Connected to 207.46.192.254
... Done
Received 39726 Bytes
Response is in:
#.BROWSER.HTML
```

There are two points to note. In the first case (using a firewall) the IP address reported is the IP address of your firewall. In the second case, there is an additional first step involved as the name of the server is resolved to its IP address (note too that this web site provides a number of IP addresses).

To keep the examples simple, BROWSER.QUERY has been written to handle only a single query at a time. Strictly speaking, it could initiate a second or third query before the result of the first had been received. This would merely entail creating multiple sockets instead of a single one.

The various functions in the BROWSER namespace are as follows:

QUERY	User function to initiate a Web query
GOTADDR	callback: reports name resolution (server name to IP address)
CONNECT	callback: handles the connection to the server
RECEIVE	callback: collects the data packets as they arrive from the server
CLOSE	callback: stores the result of the query and expunges TCPSocket
ERROR	callback: handles errors

The QUERY function

```
▼ {LARG}QUERY QRY; IP; PN; CALLBACKS; NS; P; SERVER
        A Perform world wide web query
[1]
[2]
         :If O=□NC'LARG
[3]
               IP←IP ADDRESS
[4]
               PN←PORT_NUMBER
              QRY,←' HTTP/1.0', □AV[4 3 4 3]
[5]
[6]
[7]
               :If (-2\equiv LARG)^{(2)}\equiv \rho LARG
[8]
                    IP PN←LARG
[9]
               :Else
[10]
                    IP PN←LARG 80
[11]
               :EndIf
[12]
              QRY,←' HTTP/1.1', □AV[4 3], 'Host:', IP, 4p□AV[4 3]
[13]
         :EndIf
[14]
        A Server specified by name or IP address ?
[15]
[16]
         :If ^/IP\epsilon'.
               SERVER←('RemoteAddr'IP)
[17]
[18]
         :Else
[19]
               SERVER←('RemoteAddrName'IP)
[20]
         :EndIf
[21]
         NS←(''□NS'').'.'
[22]
         CALLBACKS += ('TCPGotAddr'(NS, 'GOTADDR'))

CALLBACKS, += ('TCPConnect'(NS, 'CONNECT'))

CALLBACKS, += ('TCPRecv'(NS, 'RECEIVE'))

CALLBACKS, += ('TCPClose'(NS, 'CLOSE'))

CALLBACKS, += ('TCPError'(NS, 'ERROR'))
[23]
[24]
[25]
[26]
[27]
[28]
[29]
        A Expunge TCPSocket in case of previous error
         □EX'SO
[30]
[31]
[32]
        A Make new SO namespace containing QRY
         'SO'□NS'QRY
[33]
        A Then make SO a TCPSocket object
[34]
[35]
         P←SERVER('RemotePort'PN)('Event'CALLBACKS)
         SO. □WC(<'TCPSocket'),P ♦ □DQ'SO'
[36]
```

The first 13 lines of the function process the optional left argument and are largely unremarkable.

However, note that if you are using a firewall or proxy (no left argument), QUERY[5] adds a header to request HTTP/1.0 protocol. If you are using a direct connection, QUERY[12] instead adds a request for HTTP/1.1 protocol and a *Host* header (which in this case it knows). A Host header is mandatory for HTTP/1.1 and your firewall may add one for you.

- QUERY[16-20] sets the variable SERVER to specify either RemoteAddr or RemoteAddrName according to whether the user specified the IP address or the name of the server.
- QUERY[22-27] set up a variable CALLBACKS which associates various functions with various events. Full path-names are used for the callback functions because they will be associated by a [WC statement that is executed within the SO namespace.
- QUERY[30] expunges the object S0. This is done only in case an error occurred previously and the object has been left around.
- QUERY[33] makes a new namespace called SO and copies the variable QRY into it.

 This is done because the query cannot be submitted to the server until after a connection has been made. Thus the query is encapsulated within the TCPSocket object to make it available to the callback function CONNECT that will handle this event. A less elegant solution would be to use a global variable.
- QUERY[36] creates a new client TCPSocket object associated with the namespace \$0.

A more obvious solution would be ..

However, this is inadvisable because TCP events can occur as soon as the object has been created. If the TCPConnect event fired before QUERY[34] could be executed, the CONNECT callback function would fail with a VALUE ERROR because SO.QRY would not yet be defined. This is also a reason for attaching the callback functions in the DWC statement and not in a subsequent DWS. You do not want the TCPConnect event to fire when there is no callback attached.

Note that these timing issues are only relevant because BROWSER.QUERY is a user-called function and not a callback. If it were a callback, APL would automatically queue the incoming TCP events until it (the callback) had terminated.

Depending upon how the function was called, the next part of the process is handled by the GOTADDR or the CONNECT callback.

The GOTADDR callback function

```
∇ GOTADDR MSG;NAME;IP
[1] NAME IP←(¬MSG)[WG'RemoteAddrName' 'RemoteAddr'
[2] NAME,' resolved to IP Address ',IP
```

The GOTADDR callback function is invoked when the TCPGotAddr event occurs. This happens if the RemoteAddrName was specified when the TCPSocket was created.

The function merely obtains the name and newly resolved IP address of the server from the RemoteAddrName and RemoteAddr properties of the TCPSocket object and reports them in the session.

The CONNECT callback function

```
▼ CONNECT MSG

[1] □CS>MSG

[2] 'Connected to ',□WG'RemoteAddr'

[3] BUFFER←''

[4] 2 □NQ'' 'TCPSend' QRY

▼
```

The CONNECT function is invoked when the TCPConnect event occurs. This happens when the server accepts the client.

Its argument MSG, supplied by APL, is a 2-element vector containing:

MSG[1] MSG[2]	The name of the TCPSocket object The name of the event ('TCPConnect')
CONNECT[1]	changes to the namespace of the TCPSocket object.
CONNECT[2]	displays the IP address of the server to which the client

- displays the IP address of the server to which the client has successfully connected. This is obtained from the RemoteAddr property of the TCPSocket object.
- connect[3] initialises a variable BUFFER which will be used to collect incoming data from the server. Notice that as the function has changed to the TCPSocket namespace, this variable is encapsulated within it rather than being global.
- uses the TCPSend method to send the query (the QRY variable was encapsulated within the TCPSocket object when it was created by the QUERY function) to the server.

The next part of the process is handled by the RECEIVE callback.

The RECEIVE callback function

```
▼ RECEIVE M

[1] □CS>M

[2] BUFFER,←3>M

[3] :If v/'</html>'<u>e</u>##.lcase 3>M

[4] (>M)##.□WS'TargetState' 'Closed'

[5] :EndIf
```

The RECEIVE function is invoked when the TCPRecv event occurs. This happens whenever a packet of data is received. As the response from the server can be of arbitrary length, the job of the RECEIVE function is simply to collect each packet of data into the BUFFER variable.

Its argument MSG, supplied by APL, is a 3-element vector containing:

MSG[1] MSG[2] MSG[3] MSG[4] MSG[5]	The name of the TCPSocket object The name of the event ('TCPRecv') The data IP address of the client Port number of the client
RECEIVE[1]	changes to the namespace of the TCPSocket object.
RECEIVE[2]	catenates the data onto the variable BUFFER, which is encapsulated within the TCPSocket object.
RECEIVE[3]	checks for the presence of an <i>end-of document</i> HTML tag, which indicates that the entire page has arrived, and if so
RECEIVE[4]	sets the TargetState property of the TCPSocket to 'Closed'. This initiates the closure of the socket. Although a client can close a socket by expunging the associated TCPSocket namespace, our data (BUFFER) is in this namespace and we do not want to lose it.

Note that it is necessary for **RECEIVE** to detect the end-of-document in this way, so as to support HTTP/1.1 protocol.

The CLOSE callback function

```
▼ CLOSE MSG

[1] HTML+(¬MSG) ± 'BUFFER'

[2] □EX¬MSG

[3] '... Done'

[4] 'Received ',(▼ρHTML),' Bytes'

[5] 'Response is in:'

[6] (''□NS''),'.HTML'
```

The CLOSE function is invoked when the TCPClose event occurs. This happens when the server closes the socket. If the protocol is HTTP/1.0, this will be done immediately after the server has sent the data in response to the query. If the protocol is HTTP/1.1, the closure may be performed at the request of the client.

Note that the data has been buffered by the RECEIVE function as it arrived.

Its argument MSG, supplied by APL, is a 2-element vector containing:

MSG[1] MSG[2]	The name of the TCPSocket object The name of the event ('TCPClose')
CLOSE[1]	copies the contents of the BUFFER variable (that is local to the TCPSocket object) into the HTML variable that is global within the current (BROWSER) namespace. (Clearly this design would be inadequate if BROWSER was extended to support multiple concurrent queries.)
CLOSE[2]	expunges the TCPSocket object
CLOSE[3-6]	reports a successful end to the query and displays the size of the result.

The ERROR callback function

```
▼ R←ERROR MSG
[1] DISPLAY MSG
[2] □EX⇒MSG
[3] R←0
```

The ERROR function is invoked if and when a TCP/IP error occurs.

Its argument MSG, supplied by APL, is a 4-element vector containing:

MSG[1] MSG[2] MSG[3] MSG[4]	The name of the TCPSocket object The name of the event ('TCPError') An error number An error message
ERROR[1]	displays the contents of MSG using the DISPLAY function.
ERROR[2]	expunges the TCPSocket object (it is no longer usable)
ERROR[3]	returns a 0. This tells APL <i>not</i> to perform the normal default processing for this event, which is to display a message box.

Writing a Web Server

A sample Web server is provided in the SERVER namespace in the workspace samples\tcpip\www.dws. This is a deliberately over-simplified example to illustrate the principles involved. It is capable of handling concurrent connections from several clients, but (for simplicity) does not use multi-threading. A more comprehensive web server workspace, aplserve\server.dws, is also provided. This workspace is intended to be the basis of a production web server, and does use multithreading. Documentation is provided in the workspace itself.

The main function is **SERVER.RUN** which is niladic and initialises the APL Web server using your default IP Address and port number 81.

To use the server, you must start a Web browser such as Firefox or Microsoft Internet Explorer. You may do this on another PC on your network or on your own PC. If so, you will probably find it most convenient to position your Dyalog APL Session Window and your browser window alongside one another.

To connect to the server, simply enter your user name (or your IP address, or "127.0.0.1" or "localhost") followed by 81 in the appropriate field in your browser, and then press Enter. For example:

http://localhost:81

When you press Enter, your browser will try to connect with a server whose IP address is your IP address and whose port number is 81; in short, the APL server. Upon connection, the following messages (but with different IP addresses) will appear in your Session window:

```
SERVER.RUN
Connected to 193.32.236.22
URL Requested:
Connected to 193.32.236.22
URL Requested: images/dyalog.gif
```

and the Dyalog APL home page will appear in your browser. This has in fact been supplied by your APL server.

The functions in the SERVER namespace are as follows:

RUN user function to initiate an APL Web server

ACCEPT callback which handles client connections

RECEIVE callback which handles client commands

ERROR callback which handles errors

The RUN function

```
▼ RUN; CALLBACKS

          □EX↑'TCPSocket'□WN''
[1]
          CALLBACKS += ('Event' 'TCPAccept' 'ACCEPT')
CALLBACKS ,+= ('Event' 'TCPRecv' 'RECEIVE')
CALLBACKS ,+= ('Event' 'TCPError' 'ERROR')
[2]
[3]
[4]
[5]
           COUNT←0
           'SO' □WC'TCPSocket' '' 81, CALLBACKS
RUN[1]
                  expunges all TCPSocket objects that may be already defined. This is
                  intended only to clear up after a potential error.
RUN[2-4]
                  set up a variable CALLBACKS which associates various functions with
                  various events.
RUN[5]
                  initialises a variable COUNT which will be incremented and used to
                  name new TCPSocket objects as each client connects. COUNT is
                  global within the SERVER namespace.
RUN[6]
                  creates the first TCPSocket server using your default IP address and
                  port number 81.
```

Once the server has been initiated, the next stage of the process is that a client makes a connection. This is handled by the ACCEPT callback function.

The ACCEPT callback function

```
V ACCEPT MSG; EV

[1] COUNT ← COUNT + 1

[2] EV ← 'Event' ((>MSG) □ WG'Event')

[3] ('S', ▼COUNT) □ WC'TCPSocket' ('SocketNumber' (3>MSG)) EV

[4] □ CS>MSG

| 'Connected to ', (□ WG'RemoteAddr')

BUFFER ← □ AV [ 4 3]
```

The ACCEPT function is invoked when the TCPAccept event occurs. This happens when a client connects to the server.

Its argument MSG, supplied by APL, is a 3-element vector containing:

its different 1100, supplied by 111 E, is a 5 element vector containing.					
MSG[1] MSG[2] MSG[3]	The name of the TCPSocket object The name of the event ('TCPAccept') The socket handle for the original listening socket				
ACCEPT[1]	increments the COUNT variable. This variable is global to the SERVER namespace and was initialised by the RUN function.				
ACCEPT[3]	makes a new TCPSocket object called Sxx, where xx is the new value of COUNT. By specifying the socket handle of the original listening socket as the value of the SocketNumber property for the new object, this effectively clones the listening socket. For further discussion of this topic, see Serving Multiple Clients.				
ACCEPT[4]	changes to the namespace of the TCPSocket object, that is now connected to a client.				
ACCEPT[5]	displays the message Connected to xxx.xxx.xxx, the IP address of the client, which is obtained from the value of the				

initialises a variable BUFFER to [AV[4 3] (CR,LF). This variable is global to the SERVER namespace and is used by the RECEIVE callback function to accumulate the command that is transmitted by the client. This happens next.

RemoteAddr property.

The RECEIVE callback function

```
▼ RECEIVE MSG; CMD; OLD; URL; FILE; DATA

[1]
       OLD+ CS > MSG
[2]
       BUFFER, ←3>MSG
[3]
        :If □AV[4 3 4 3]≢-4↑BUFFER A Have we all?
[4]
[5]
            :Return
        :EndIf
[6]
[7]
       CMD+2↓"(□AV[4 3] EBUFFER) CBUFFER
[8]
       CMD←⊃CMD A Ignore everything except client request
[9]
       TICS OLD
[10]
        :If 'GET /'≡5↑CMD
            URL+5↓CMD
[11]
            URL←(-1+URLı'')↑URL
[12]
[13]
            □←'URL Requested: ',URL
            :If O=pURL ♦ URL←'index.htm' ♦ :EndIf
[14]
            URL ← (-'.html'=-5↑URL)↓URL
FILE ← (2 □NQ'.' 'GetEnvironment') 'Dyalog'
[15]
[16]
[17]
            FILE, ←HOME, URL
[18]
            DATA-GETFILE FILE
[19]
            DATA, ←(0<pDATA)/'File not found'
[20]
            2 □NQ(¬MSG)'TCPSend'DATA
[21]
        :EndIf
[22]
[23]
        :If 9=□NC>MSG ♦ (>MSG)□WS'TargetState' 'Closed' ♦
:EndIf
[24]
        :If 9=□NC>MSG ♦ □DQ>MSG ♦ :EndIf
```

The RECEIVE function is invoked whenever a TCPRecv event occurs. This happens when a data packet is received from a client

Its argument MSG, supplied by APL, is a 3-element vector containing:

- MSG[1] The name of the TCPSocket object
 MSG[2] The name of the event ('TCPReceive')
 MSG[3] The data
- changes to the namespace of the TCPSocket object. The name of the current namespace is stored in the local variable OLD.
- RECEIVE[2] catenates the newly received data packet to the BUFFER variable that is encapsulated in the TCPSocket object and was initialised by the ACCEPT function.
- RECEIVE[3-5] tests whether or not all of the command sent by the client has been received. This is true only if the last 4 characters of BUFFER are CR,LF,CR,LF. If there is more data to come, RECEIVE exits; otherwise it goes on to process the command.

RECEIVE[7-8]	splits the command into sub-strings and then discards all but the first one.			
RECEIVE[9]	changes back into the SERVER namespace			
RECEIVE[10-11] parses the client request for a URL. For the sake of simplicity request is assumed to begin with the string 'GET /'. If not, request is ignored.				
RECEIVE[12]	removes all trailing information that might be supplied by the browser after the URL.			
RECEIVE[14]	checks for a request for an empty URL (which equates to the home page). If so, it substitutes index.htm which is the name of the file containing the home page.			
RECEIVE[15]	drops the file extension of the URL if .html to .htm if required.			
RECEIVE[16]	sets the value of local variable FILE to the name of the directory in which Dyalog APL is installed.			
RECEIVE[17]	appends the path-name of the sub-directory \help and the name of the URL. FILE now contains the full path-name of the requested web page file.			
RECEIVE[18]	uses the utility function GETFILE to read the contents of the file into the local variable DATA.			
RECEIVE[19]	checks that the result of GETFILE was not empty and if so, appends an appropriate message. This would be the case if the file did not exist.			
RECEIVE[20]	uses TCPSend to transmit the contents of the file to the browser.			
RECEIVE[23-24	closes the TCPSocket object. This is a fundamental part of the HTTP protocol because when the client socket subsequently gets closed, it knows that all of the data transmitted by the server has been received. Notice that the function does not simply expunge the socket which could result in loss of yet untransmitted data. Instead, it closes the socket by setting its TargetState property to 'Closed', and then (if necessary) waiting. Once all the buffered data has been transmitted, the socket will be closed and the TCPSocket object will disappear. This causes the DQ to terminate.			

For further information on WWW protocol, see the *Introduction* to this chapter.

CHAPTER 11

OLE Automation Client and OLE Controls

Introduction

OLE Automation allows you to drive one application from another and to mix code written in different programming languages. In practical terms, this means that you may write a subroutine to perform calculations in (say) C++ and use the subroutine directly in Visual Basic 4 or Excel. Equally, you could write the code in Visual Basic and call it from C++. Dyalog APL/W is a fully subscribed member of this code-sharing club.

OLE Automation is, however, much more than just a mechanism to facilitate cross-application macros because it deals not just with subroutine calls but with *objects*. An object is a combination of code and data that can be treated as a unit. Without getting too deeply into the terminology, an object defines a *class*; when you work with an object you create one or more *instances* of that class.

This chapter describes how Dyalog APL can drive other applications using OLE Automation. In these circumstances, Dyalog APL is acting as an OLE *client*.

There are two types of OLE object involved; OLE Servers and ActiveX controls. An ActiveX control can be instantiated as a GUI object within a Dyalog APL Form, whereas an OLE Server either has no GUI component, or is a separate object. Otherwise, the two are very similar.

You can obtain lists of the OLE Servers and ActiveX Controls installed on your computer from the OLEServers and OLEControls properties of the system object '.'. These lists are obtained from your Windows Registry and therefore contains only those OLE objects that are correctly installed. Each OLE Server and OLE Control is identified by its name and class identifier. Either may be used to access it.

Using an OLE Server

You can access an OLE Automation or COM Server using the OLEClient object. When you create an OLEClient, you specify the name of the Server as the ClassName property for the object.

For example:

```
XL←□NEW 'OleClient' (<'ClassName' 'Excel.Application')
or.using □WC
'EX'□WC'OLEClient' 'Excel.Application'
```

The effect of both statements is to create an object EX, which is connected to an instance of the of the Excel.Application Class, an OLE Server. The OLE Server instance may be *in-process* or *out-of-process*. If it is in-process, the code and data associated with the instance are loaded into the same address space as the Dyalog APL process. In the latter case, the instance represents a separate Windows process on your computer or, on an entirely different computer in the network.

When APL connects to an out-of-process OLE Server in this way, you can specify whether you wish to connect to an existing (running) instance of the Server, or start a new copy of the Server. This is done using the InstanceMode property.

Loading an ActiveX Control

An ActiveX or OLE Control is in fact a type of Dynamic Link Library (DLL) which must be loaded before it can be used. This is done by creating an OCXClass object using **\| \mathbb{UC}** or **\| \mathbb{NEW**.

For example, if you have an OLE Control named "Microsoft Office Chart 9.0", you can load it with the following statements (which are split here only to prevent text wrap)

```
NAME←' Microsoft Office Chart 9.0 '
MOC←□NEW 'OCXClass' (⊂'ClassName' NAME)

or, using □WC
'MOC' □WC 'OCXClass' NAME
```

The right argument is a character string containing the name or class identifier of the ActiveX Control. The left argument is an arbitrary name of your own choosing by which you will subsequently refer to the Control class.

Using an OLE Control

Having created an OCXClass object, you may *use* an OLE Control by creating an *instance* of it from its class. The instance must be created as the child of a Form. For example:

```
'F' □WC 'Form'
'F.MM' □WC 'MOC' A Instance of MOC
```

Although you can obtain general information about an OLE Control from both the class (represented by the OCXClass object) and any instance, you may only query and manipulate a control through an instance.

Type Information

In general, it is a requirement that all COM objects provide *Type Information*. This is commonly provided in a type library file (extension .TLB) or is included in the object's .EXE or .DLL file. Type Information includes the names of the methods, events and properties exported by the object, together with descriptions of the arguments to each method and descriptions of the data types of each property. Type Information is necessary for the COM object to be properly recognised by object browsers and by application development systems.

When you load a COM object, APL reads all of the Type Information associated with the top-level object into the workspace. In addition, it reads the Type Information for all other objects in the same object hierarchy, and the Type Information for any other COM objects that are used or referenced by it. This Type Information is retained in the workspace when you <code>) SAVE</code> it. When you reattach an OLEClient or OCXClass to the same object, there is no need for the Type Information to be re-read. Because the operation to read the Type Information may take several seconds, possibly minutes, this design optimises run-time performance. Note however, that the Type Information does occupy a considerable amount of workspace.

Dyalog APL uses the Type Information to expose the names, data types and arguments of all the methods, events and properties provided by the object, and those of all the other sub-objects in the object hierarchy. Dyalog APL also uses the Type Information to validate the arguments you supply to methods (both the number and the data types) and the values you assign to properties. For example, if a method is defined to take an argument VT_I4, Dyalog APL will issue a DOMAIN ERROR if you invoke the method with a character argument. Internally, Dyalog APL uses the Type Information to convert between APL arrays and OLE data types.

Warning: not all COM objects provide Type Information, or do so in non-standard ways. Perhaps the reason for this omission is that is that Microsoft Visual Basic for Applications (VBA) does not itself require Type Information. OLE data types are for the most part identical to VBA data types. Furthermore, VBA syntax does not distinguish between calling a function and referencing a variable. Therefore, all you need to drive a COM object from VBA is the documentation. Finally, as most other Microsoft products use VBA as their programming interface, authors of COM objects can satisfy most of their potential users without Type Information and so take the easy way out. Nevertheless, OLE Servers which fail to provide Type Information can be successfully used from Dyalog APL; for details, see the section entitled OLE Objects without Type Information later in this Chapter.

Identifying Properties, Methods and Events

You can obtain the names of all the properties, methods, and events exposed by a COM object by executing the system funtion $\square NL$, with the appropriate argument, inside the namespace that is associated with an instance of the object. Note that the result of $\square NL$ is a vector of character vectors. If Type Information is unobtainable, the list of items reported by $\square NL$ will be empty. See the section entitled *OLE Objects without Type Information* later in this Chapter.

```
For example:
```

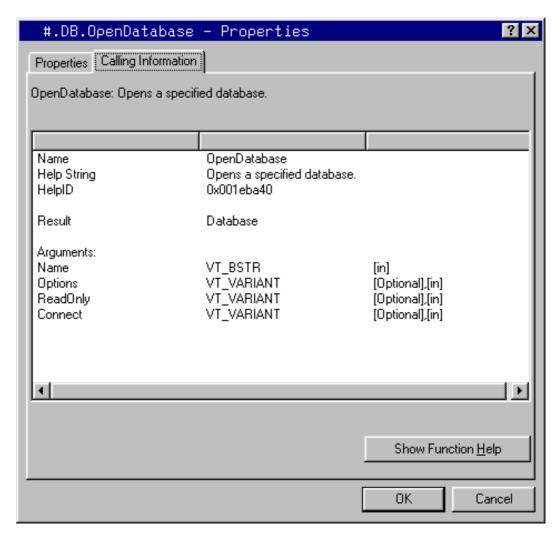
```
DB← NEW'OleClient' (c'ClassName' 'DAO.DBEngine.36')
     DB. □NL <sup>-3</sup> A Methods
BeginTrans CommitTrans CompactDatabase
                                          CreateDatabase
       CreateWorkspace
                        Idle ISAMStats
                                         OpenConnection
      OpenDatabase RegisterDatabase RepairDatabase Ro
     llback SetOption
     DB. ☐NL <sup>-</sup>2 A Properties
AutoBrowse ChildList ClassID ClassName
                                           Data
     Password DefaultType DefaultUser
                                         Errors
     Handle HelpFile IniPath
                                InstanceMode
                                              KeepOnClos
     e LastError Locale LoginTimeout
                                         Properties
     ueEvents SystemDB Type TypeList
                                         Version Worksp
     aces
```

Pre-Version 11 Behaviour

Im previous versions of Dyalog APL, you could obtain this information from the PropList, MethodList and EventList properties of the object. Note that these 3 properties are internally generated by Dyalog APL and are not exported by the object itself. You could also obtain this information by executing the system commands) PROPS,) METHODS and) EVENTS inside the namespace that is associated with an instance of the object.

For backwards compatibility, these capabilities are retaind when **DWX** is 0 or 1.

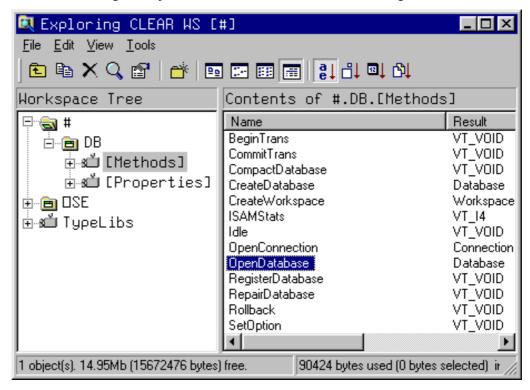
For example:


```
DB' WC'OleClient' 'DAO.DBEngine.36'
      )CS DB
#.DB
      )METHODS
BeginTrans
                 CommitTrans
                                   CompactDatabase
                 CreateWorkspace Idle
                                            ISAMStats
CreateDatabase
OpenConnection OpenDatabase
                                   RegisterDatabase
RepairDatabase
                 Rollback
                                   SetOption
      ) PROPS
AutoBrowse
                 ChildList
                                   ClassID ClassName
        DefaultPassword DefaultType
Data
                                            DefaultUser
Errors
        Event
                 EventList
                                   Handle
                                            HelpFile
                          KeepOnClose
                                            LastError
IniPath InstanceMode
Locale LoginTimeout
                          MethodList
                                            Properties
PropList
                 QueueEvents
                                   SystemDB
                                                     Type
TypeList
                 Version Workspaces
Or, for example, using an ActiveX Control:
      NAME←'Microsoft Office Chart 9.0'
      'MOC'□WC'OCXClass'NAME
'F' □WC'Form'
'F.MOC' □WC 'MOC' A Instance of MOC
      )CS F.MOC
#.F.MOC
      )PROPS
Attach AutoConf B
Charts ChartDataSources
                          Border
                                   BuildNumber
                                                     CanUndo
                                   ChartLayout
                          ChartSpaceTitle ChartWrapCount
ChartSpaceLegend
ChildList
                ClassID ClassName
                                           Constants...
```

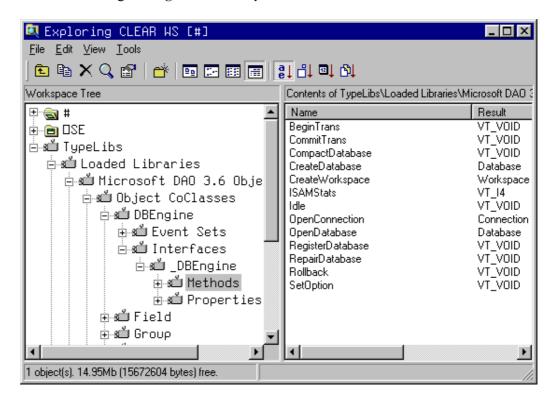
Using the Property Sheet

The simplest way to obtain further information about an OLE property, method or event is to display its Property Sheet.

To do this, change space to the namespace that represents the object, type the name (or place the cursor over the name) of the property, method or event in question, press the right mouse button and select Properties from the context menu.


The information displayed for the OpenDatabase method that is provided by the DAO.DBEngine OLE object is shown below.

Using the Workspace Explorer


You can also obtain information using the Workspace Explorer.

If you have created an instance of an object, you can navigate to it using the Explorer and then browse its Events, Methods and Properties. The picture below illustrates the effect of browsing the object DB that is connected to DAO.DBEngine.35.

To obtain detailed information about a specific property, event, or method, just open the appropriate folder and select the name you want. The details will be displayed in the list view pane.

The same information can be obtained by browsing the *Loaded Libraries* folder. This folder will be displayed if the *View/Type Libraries* menu item is checked and the appropriate library has been loaded. The library will be loaded if you have ever created an instance of the object in this workspace. Alternatively, you may navigate to the information using the *Registered Library* folder.

GetPropertyInfo Method

You can also obtain information about the properties exposed by a COM object, using the GetPropertyInfo method. Note that this is a Dyalog APL method, added to the object, and not a native method provided by the object itself.

For example, the DAO.DBEngine OLE object exposes a property called Version. You can discover the meaning of the Version property as follows:

```
GetPropertyInfo 'Version'
Returns the version of the database engine. VT_BSTR

Or, using \[ \text{NQ} \] ' ' 'GetPropertyInfo' 'Version'
Returns the version of the database engine. VT_BSTR
```

This tells you that the property value is a character string (VT_BSTR) that contains the version number of the database engine.

```
Version 3.51
```

GetMethodInfo Method

You can also obtain information about the methods exposed by an OLE object, using the GetMethodInfo method. Note that this is a Dyalog APL method, added to the object, and not a native method provided by the object itself.

For example, the DAO.DBEngine OLE object exposes a method called OpenDatabase. You can obtain information about the OpenDatabase method as follows:

```
†GetMethodInfo 'OpenDatabase'
Opens a specified database VT_DISPATCH
Name VT_BSTR
[Exclusive] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT VARIANT
```

This tells you that the method opens a specified database and that the result is of type VT_DISPATCH. Furthermore, the function takes up to four arguments, the first of which (called Name) is a character string (VT_BSTR). The remaining 3 arguments (called Exclusive, ReadOnly and Connect) are optional (their names are surrounded by []) and of type VT_VARIANT.

GetEventInfo Method

Let's use the Windows Media Player as an example. First we must load the Control by creating an OCXClass object using **DNEW**.

```
wmp←□NEW'OCXClass'(c'ClassName' 'Windows Media Player')
'f'□WC'Form'
'f.wmp'□WC'wmp'
```

Next we can find out what events it supports using $\square NL = 8$.

```
wmp.□NL <sup>-8</sup>
Buffering Click
                  Db1Click
                            Disconnect
                                        DisplayModeChange
       DVDNotify
                  EndOfStream
                                      KeyDown
                              Error
                                                KeyPress
                      MouseDown MouseMove MouseUp
           MarkerHit
     Stream OpenStateChange PlayStateChange
                                                PositionCh
                              ScriptCommand
           ReadyStateChange
```

Then, we can obtain information about a particular event (or events) by invoking a GetEventInfo method. Note that in the case of the Windows Media Control it is necessary to query the instance of the control (f.wmp) as opposed to the instance of the OCXClass (wmp). For example, you can ask it about its MouseDown event. The result is a vector, each element of which is a 2-element vector of character vectors.

```
pINFO←⊂f.wmp.GetEventInfo'MouseDown'
5
```

The first element contains a description of the event and the data type of its result (few events generate results, so this is usually VT_VOID), i.e.

```
>INFO
Sent when a mouse button is pressed VT_VOID
```

Subsequent elements describe the name and data type of each of the parameters to the event. These are the items that will appear as the third and subsequent elements of the event message that is passed as the right argument to a callback function or returned as the result of $\square DQ$. In this case:

```
†1↓INFO
Button VT_I2
ShiftState VT_I2
x VT_COORD
y VT_COORD
```

This information tells us that the first parameter *Button* is a 2-byte integer value which (presumably) is the number of the mouse button that the user has pressed. The second parameter *Shift* is also a 2-byte integer and (presumably) reports the keyboard shift state. The third and fourth parameters *X* and *Y* are of data type VT_COORD.

Obtaining On-line Help

You can display the help topic associated with a property, method, or event by selecting Help from its context menu or using the help button in its property sheet.

Note that the name of the object's help file is provided by its HelpFile property.

For example, in the case of the DAO.DBEngine OLE object:

UWG'HelpFile'
C:\PROGRAM FILES\COMMON FILES\MICROSOFT SHARED\DAO\dao.hlp

For Office 2000 applications, you will need to install the MSDN to obtain the appropriate help files.

Methods

When you create an instance of a COM object, the methods and the properties are directly accessible from the corresponding namespace.

Calling Methods

You invoke a method in an OLE object as if it were an APL function in your workspace.

If a method takes no parameters, you must invoke it as if it were niladic.

If a method takes parameters, you must call it as if it were monadic. Each element of its argument corresponds to each of the method's parameters.

If a method takes a parameter declared as a string (VT_BSTR) you must call it with an **enclosed** character vector.

Note: In previous versions of Dyalog APL, a character vector was automatically enclosed if required,. For backwards compatibility you may select old or new behaviour using $\square WX$. If $\square WX$ is 3 (the default) you **must** enlose a single string argument. IF $\square WX$ is 0 or 1, you **may** supply a simple character vector.

For example, the OpenDatabase method in the DAO.DBEngine OLE server may be called with a single parameter that specifies the name of the database to be opened. You may call it from APL with either of the following two expressions:

```
OpenDatabase 'c:\example.mdb' Aonly if □WX is 0 or 1 OpenDatabase c'c:\example.mdb'Aany value of □WX
```

Arrays and Pointers

Many parameters to OLE methods are specified by pointers. If, for example, the parameter type is VT_BSTR, it means that the calling routine must supply a pointer to (i.e. the address of) a character string.

Similarly, if the parameter type is defined to be VT_VARIANT, it means that the parameter is the address of an arbitrary array (the VT_VARIANT data type actually maps nicely onto a Dyalog APL nested array).

The rule is that if a pointer is required, APL will provide it automatically; you do not have to do so. Instead, all you do is supply the value.

Optional Parameters

Methods are often defined to have optional parameters. For example the parameters defined for the OpenDatabase method provided by the DAO.DBEngine OLE object are:

Name	VT_	_BSTR
[Exclusive]	VT_	_VARIANT
[ReadOnly]	VT_	_VARIANT
[Connect]	VT	VARIANT

To call the corresponding APL function, you may supply a nested array that contains 1,2, 3 or 4 elements corresponding to these parameters.

The parameters to some methods are all optional. This means that the method may be called with or without any parameters. As APL does not support this type of syntax, the special value θ (zilde) is used to mean "0 parameters".

For example, the parameters for the Idle method provided by DAO.DBEngine are defined to be:

```
[Action] VT_VARIANT
```

This means that the method takes either no arguments or one argument. To call it with no argument, you must use θ (zilde), for example:

```
Idle 0
```

Note that you cannot therefore call a function in an APL server with a single argument that is an empty numeric vector.

Output Parameters

You may encounter parameters whose data type is defined explicitly as a pointer to something else, for example VT_PTR to VT_UI4 specifies a pointer to an unsigned 4-byte integer.

In these cases, it usually means that the calling routine is expected to pass an address into which the OLE method will place a value.

When you invoke the method you must use data of the type pointed to.

The result of the method is then a vector containing the result defined for the method, followed by the (new) values of the output parameters. This is similar to the mechanism used by $\square NA$.

Named Parameters

Visual Basic syntax allows you to specify parameters by position or by name; rather like **GWC** and **GWS**. For example the parameters defined for the OpenDatabase method provided by the DAO.DBEngine OLE object are:

```
Name VT_BSTR
[Exclusive] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT
```

You could call this method from Visual Basic using the syntax:

You may do the same thing from Dyalog APL, using **WS** syntax. For example, the equivalent call from APL would be:

```
OpenDatabase('Name' 'c:\example.mdb')('ReadOnly' 1)
```

Note that you may only use named parameters if they are supported by the method. Many methods do not allow them.

Methods that return Objects

Object hierarchies in OLE are not static, but are created dynamically by calling methods that return objects as their result.

If the data type of the result of a method is a pre-defined object type, or VT_DISPATCH or VT_COCLASS, or VT_PTR to VT_DISPATCH or VT_PTR to VT_COCLASS, the result returned to APL is a *namespace*. If the result is assigned to a name, the value associated with that name becomes a *namespace reference*. For example, GetMethodInfo tells us that the syntax for the OpenDatabase method provided by the OLE object DAO.DBEngine is as follows:

```
† DB.GetMethodInfo 'OpenDatabase'
Opens a specified database VT_DISPATCH
Name VT_BSTR
[Exclusive] VT_VARIANT
[ReadOnly] VT_VARIANT
[Connect] VT_VARIANT
```

The data-type of the result is VT_DISPATCH, so it returns an object; indeed the help for the method tells us that it returns a Database object. The function could be called from APL as follows:

```
DB←OpenDatabase <'example.mdb'
```

Alternatively, you may simply use the result as an argument to a defined function or as the argument to $\square CS$ or :With, thereby switching into the namespace returned by the method. For example:

```
:With OpenDatabase <'example.mdb'
...
:EndWith</pre>
```

Notice that in both these cases, the namespace associated with the result of the OpenDatabase method is *unnamed*. Assigning the result of OpenDatabase to DB does not set the namespace *name* to DB, it merely assigns a namespace *reference* to DB.

To preserve compatibility with previous versions of Dyalog APL that did not support namespace references, a method that returns an object may be called with the name of the (new) namespace as its left argument. Note that OLE methods do not themselves accept left arguments, so this extension does not conflict with OLE conventions.

```
'DB' OpenDatabase <'example.mdb'
```

This expression creates a new namespace called DB associated with a new object in the OLE Server. Note that if you invoke the OpenDataBase method in this way, its result is a number that represents the *Dispatch Interface* of the new object. This is done to preserve compatibility with previous versions of Dyalog APL.

Properties

By default, Properties exposed by a COM object behave in the same way as Properties exposed by Dyalog APL Classes.

To query the value of a property, you simply reference it. To set the value of the property, you assign a new value to it. If the Property is an Indexed Property, you may use indexing to set or retrieve the value of a particular element.

Note that in previous versions of Dyalog APL, indexed Properties of COM objects were exposed as Methods and for backwards compatibility this behaviour may be retained by setting DWX to 0 or 1 (the default value is 3). See Language Reference.

If the old (pre-Version 11.0) behaviour is selected., indexed properties are exposed as methods and you treat the property as if it were an APL function. To obtain the value of the property, you must call it monadically, specifying the required index (or other information) as the argument. To set the value of the property, you must call it dyadically, specifying the required index (or other information) as the right argument and the new value as the left argument.

The data type of the variable is reported by the **GetPropertyInfo** method. Conversion between APL data types and OLE data types is performed automatically.

If you attempt to set the value of a property to an something with an inappropriate data type, APL will generate a DOMAIN ERROR.

If you set the value to something of the correct data type, APL will pass it through the OLE interface. However, the OLE object may itself reject the new value. In this case, APL will also generate a DOMAIN ERROR. However, the OLE error information may be obtained from the LastError property of the object or Root. The error is also displayed in the Status Window.

Note that if DWX is 0 or 1,) PROPS and PropList report the names of all of the properties of an object, regardless of whether the property is implemented as a variable or as a function. You can tell whether or not the property takes an argument (and therefore behaves as a function) from its property sheet, using GetPropertyInfo, or from the documentation for the object in question.

Properties as Objects

Dyalog APL permits an object hierarchy to be represented by a namespace hierarchy. In other words, the relationship between one object and another is a parent-child relationship whereby one object owns and contains another.

Visual Basic has no such mechanism and the relationship between objects has to be specified in another way. This is commonly done using properties. For example, an object view of a bicycle could be a hierarchy consisting of a bicycle object that contains a Frame object, a FrontWheel object and a RearWheel object. In Visual Basic, you could represent this hierarchy as a Bicycle object having Frame, FrontWheel and RearWheel *properties* which are (in effect) pointers to the sub-objects. The properties are effectively used to tie the objects together.

An extension of this idea is the Visual Basic Collection object. This is a special type of object, that is somewhat similar to an array. It is used where one object may contain several objects of the same type. For example, a Wheel object could contain a Spokes collection object which itself contains a number of individual Spoke objects. Collection objects are usually implemented as properties.

When you reference the value of an object property, you will get a namespace.

Using the bicycle analogy, you could recreate the object hierarchy in the APL workspace as follows:

The result would be three namespaces, one named BIKE, and two unnamed namespaces referenced by FRONT and REAR. Each contains the specific properties, methods and events exposed by the three corresponding objects.

Note however, that in this example BIKE, FRONT and REAR are all top-level namespaces; a proper parent/child representation can be achieved by making FRONT and REAR child namespaces of BIKE, for example:

```
BIKE.FRONT ← BIKE.FrontWheel
BIKE.REAR ← BIKE.RearWheel

or

:With BIKE
FRONT ← FrontWheel
REAR ← RearWheel
:EndWith
```

This example illustrates that when you work with an OLE object, you have a choice whether to represent an object hierarchy as a namespace *tree* or just as a collection of otherwise unrelated namespaces.

Events

Events generated by OLE objects are provided via an *event sink* which is simply an interface that defines a collection of events that may be generated by the object. Objects may support more than one event sink and may or may not define them in a type library.

By default, events generated by COM objects are processed like all other events in Dyalog APL.

This means that if you attach a callback function to an event in an instance of an OCXClass object, the events are queued up when they are received and then processed one-by-one, by DQ, from the internal queue. This is the mechanism used to process all events in Dyalog APL and it has many advantages:

- Events are handled in an orderly manner
- An event cannot interrupt a callback that is processing a previous event
- Incoming events are held up so that you can trace a callback function

The disadvantage of this approach is that, for internal reasons, your APL callback function is unable to return a result to the ActiveX control, or to modify any of the arguments supplied by the event. This is a severe problem if the COM object relies on callbacks to control certain aspects of its functionality.

The QueueEvents property allows you to change the normal behaviour so that it is possible for a callback function to return a result to a COM object.

If QueueEvents is 1, which is the default, the result (if any) of your callback function is not passed back to the COM object but is discarded. Thus you cannot, for example, inhibit or modify the default processing of the event by the COM object.

If instead you set QueueEvents to 0, the callback function attached to the event is executed immediately, even if there are other APL events before it in the internal event queue. The result of your callback function is then passed back to the COM object which may use it to inhibit or modify its normal event processing.

See QueueEvents for further details.

Using the Microsoft Jet Database Engine

The SQL function in workspace samples\ole\oleauto.dws is a simple example showing how you can call the Microsoft Jet database engine using OLE.

SQL is dyadic. The left argument is the path-name of an Access database; the right argument is a query in the form of an SQL statement.

The result is a matrix containing the records that match the query.

For example:

```
FILE← 'c:\Program Files\Microsoft
Office\Office\Samples\Northwind'
QUERY←'Select * From Suppliers'

pFILE SQL QUERY
29 11
```

The SQL Function

```
▼ DATA←DATABASE SQL QUERY; DB; DBS; RCS

[1]
      A Uses the OLE Server DAO.DBEngine to perform a
[2]
      A query on an MS Access database
[3]
[4]
        'DB' DC'OleClient' 'DAO.DBEngine.35'
[5]
[6]
[7]
       :Trap 11 ERROR
            DBS←DB.OpenDatabase⊂DATABASE
[8]
            RCS+DBS.OpenRecordset<QUERY
[9]
            DATA+QRCS.GetRows 999
[10]
[11]
       :Else
            DATA←'DB'∏WG'LastError'
[12]
       :EndTrap
```

Let us examine how the function works.

```
[4] 'DB' WC'OleClient' 'DAO.DBEngine.35'
```

This statement creates a new namespace called DB that is connected to the DAO.DBEngine OLE Server. After the statement has executed, DB is essentially an instance of the object and exposes the methods and properties provided by the object.

```
[7] DBS←DB.OpenDatabase⊂DATABASE
```

The OpenDatabase method is called with the name of the database file as its single argument (other parameters are optional and omitted here). The result of OpenDatabase is a (new) Database object whose namespace reference is assigned to DBS.

[8] RCS+DBS.OpenRecordset QUERY

The OpenRecordset method is called with a character vector containing an SQL statement as its argument. The result of OpenRecordset is a (new) Recordset object whose namespace reference os assigned to RCS.

[9] DATA+QRCS.GetRows 999

The GetRows method takes a single parameter which is the number of rows to be fetched. This simple example ignores the possibility that there may be more than 999 records to be fetched and ignores the possibility of WS FULL. The result is a nested matrix containing the data. In this case, the data is transposed.

It is not actually necessary to assign the results of the expressions in lines [7] and [8]. These expressions, which return namespaces, can simply be parenthesised and the entire query can be executed in a single statement as illustrated by function SQL1.

```
▼ DATA+DATABASE SQL1 QUERY;DB

[1] A Shorter version of SQL

[2]

[3] 'DB' WC'OleClient' 'DAO.DBEngine.35'

[4]

[5] :Trap 11

[6] DATA+♥((DB.OpenDatabase<DATABASE).

OpenRecordset<QUERY).GetRows 999

[7] :Else

[8] DATA+DB.LastError

[9] :EndTrap
```

OLE Objects without Type Information

If you create an instance of a COM object that does not provide Type Information, the resulting namespace be empty and will appear to provide no methods and properties.

Nevertheless, in most cases, you will still be able to access its methods and properties using *Late Binding* or SetMethodInfo and SetPropertyInfo as follows.

Late Binding

Late Binding in this context means that the association between an APL name and a method or property exported by the COM object is deferred until the name is used.

If you refer to a name inside the OLEClient namespace that would otherwise generate a **VALUE ERROR**, APL asks the COM object if it has a member (method or property) of that name.

The mechanism permits APL to determine only that the member is exported; it says nothing about its type (method or property) nor its syntax. If the response from the COM object is positive, APL therefore makes the most general assumption possible, namely:

- That the member is a method
- That it may take up to 16 optional arguments
- That each argument is input/output (i.e. specified via a pointer)
- That the method returns a result.

This means that if you know, from its documentation or another source, that a COM object provides a certain Method or Property, you may therefore access that member by simply calling a function of that name in the OLEClient namespace. Note that any parameters you pass will be returned in the result, because APL assumes that all parameters are input/output. Furthermore, APL will be unable to check the validity of the parameters you specify because it does not know what data types are expected.

SetMethodInfo and SetPropertyInfo

The SetMethodInfo and SetPropertyInfo methods provide a mechanism for you to precisely specify the missing Type Information for the methods and properties that you wish to use. See *Object Reference* for further details.

Note that whether you use late binding or SetMethodInfo/SetPropertyInfo, any subobject namespaces that you create by invoking the methods and properties in the toplevel object, will also have no visible methods and properties. Therefore, if the Type Information is missing, Late Binding or SetMethodInfo and SetPropertyInfo must be used to access all the methods and properties that you wish to use, wherever they occur in the object hierarchy.

Events

When type library information is available, Dyalog APL automatically connects the appropriate event sinks and establishes the EventList property for the object when it is created. However, if the COM object does not declare its event sinks in a type library, it is necessary to connect to them manually. To support these cases, the following methods are used. These apply to top-level COM objects and to the namespaces associated with any other COM objects exposed by them.

Method	Description
OLEListEventSinks	Returns the names of any event sinks currently attached to an object. An event sink is a set of events grouped (for convenience) by a COM object.
OLEAddEventSink	Attaches the namespace associated with an object to a specific event sink that it supports. If successful, new event names will appear in the EventList property of the namespace. This is the only way to access events from an event sink that is not described in the object's Type Information.
OLEDeleteEventSink	Removes the events associated with a particular event sink from the EventList property of the namespace associated with an object.

Collections

A collection is a special type of object that represents a set of other objects. Collections are typically implemented as properties. For example, the Excel Sheet object has a property named Sheets whose value is a collection object that represents a set of worksheets. Collections typically have a property called Count, which tells you how many objects there are, and a Default Property named Item that provides access to each member of the set. Item typically accepts a number or a name as an index and returns a reference to an object.

For example, if a workbook contains two worksheets named "P&L" and "2002 Sales" respectively, they might be accessed as follows:

```
S1+Sheets.Item[1]
S1.Name
P&L
S2+Sheets.Item ['2002 Sales']
S2.Index
```

Note that in old versions of Dyalog APL (pre-Version 11.0) the Item property was exposed as a method. This old behaviour may be select by setting $\square WX$ to 0 or 1 when you create the object. In which case:

```
S1+Sheets.Item 1
S1.Name
P&L
S2+Sheets.Item '2002 Sales'
S2.Index
2
```

Note that some collections work in origin 0 and some in origin 1; there is no way to tell which applies except from the documentation. Furthermore, collections are used for all sorts of purposes, and may not necessarily permit the instantiation of more than one member of the set at the same time. Collections are *not* the same as arrays.

As mentioned above, the Item property is typically the Default Property (see Language reference) of a Collection, so indexing may be applied directly to the Collection object.

```
Sheets[1 2].Name
P&L 2002 Sales
```

The :For - :EndFor control structure provides a convenient way to enumerate through the members of a collection without using the Item property. For example, the following code snippet accumulates the values in an Excel worksheet collection.

```
DATA+Op<0 Op0
:For S :In Sheets A Enumerate SHEETS collection
DATA,+⊂S.UsedRange.Value2
:EndFor
```

Null Values

COM methods and properties frequently return null values for which there is no direct equivalent in the APL language. Instead, the system constant **NULL** is used to represent a null value.

The following spreadsheet contains a number of empty cells.

Microsoft Excel - simple.xls □ □								
File Edit View Insert Format Tools Data Window Help Acrobat 💷 🗗 🗴								
□ 🚅 🔲 🞒 🐧 🚏 Καναν Σ ধ 🛍 😾 100% 🔻 🖫							» ▼	
Arial - 10 - B I ≣ ≣ ≣ ■								
罛	a		·	·				
	H10	▼	=					
	Α	В	С	D	Е	F		
1								
2			Year					
3			1999	2000	2001	2002		
4								
5		Sales	100	76	120	150		
6								
7		Costs	80	60	100	110		
8								
9		Margin	20	16	20	40		
10								
Id d ▶ N Sheet1/							٠	
Ready NUM NUM						/		

Using the Excel.Application COM object, the contents of the spreadsheet can be obtained as follows:

```
'EX' WC'OLEClient' 'Excel.Application'
WB+EX.Workbooks.Open 'simple.xls'

WB.Sheets[1].UsedRange.Value2
[Null] [Null] [Null] [Null]
[Null] Year [Null] [Null] [Null]
[Null] 1999 2000 2001 2002
```

Livaiij	Livaiij	Livaiij	Livaiij	Livaiij
[Null]	Year	[Null]	[Null]	[Null]
[Null]	1999	2000	2001	2002
[Null]	[Null]	[Null]	[Null]	[Null]
Sales	100	76	120	150
[Null]	[Null]	[Null]	[Null]	[Null]
Costs	80	60	100	110
[Null]	[Null]	[Null]	[Null]	[Null]
Margin	20	16	20	40

To determine which of the cells are filled, you can compare the array with **INULL**.

NULL should also set the values of COM properties to null.

Additional Interfaces

Most COM objects and their sub-objects provide information about their methods and properties through the IDispatch interface which is the normal interface used for OLE Automation. When you create an instance of an OLEClient object or an OCXClass object, Dyalog APL uses this interface to gain the information it requires.

If an object does not provide an IDispatch interface, or if an object provides additional functionality through other interfaces, it is possible to access the object's functionality using the OLEQueryInterface method.

In addition, if an object exposes sub-objects using an interface other than IDispatch, you may access these sub-objects using the OLEQueryInterface method..

See OLEQueryInterface for further details.

Writing Classes based on OLEClient

You may define APL Classes (See Language Reference) based upon the OLEClient object. For example:

```
:Class Excel: 'OLEClient'
    ∇ ctor wkbk
      :Access Public
      :Implements Constructor :Base ,<('ClassName'
'Excel.Application')
      Workbooks.Open <wkbk
:EndClass A Excel
      XL TNEW Excel 'f:\help11.0\days.xls'
      XL.Workbooks[1].Sheets[1].UsedRange.Value2
   From
             То
                   Days
                          Hours
 38790
          38791
                           3.25
                       0
          38792
 38792
                  [Null]
                           2.25
          38793
                  [Null]
 38793
                           2.5
 38799
          38799
                  [Null]
                           5
 38800
          38800
                           3
                  [Null]
[Null]
         [Null]
                  [Null]
                          16
```

CHAPTER 12

OLE Automation Server

Introduction

OLE Automation allows you to drive one application from another and to mix code written in different programming languages. In practical terms, this means that you may write a subroutine to perform calculations in (say) C++ and use the subroutine directly in Visual Basic or Excel. Equally, you could write the code in Visual Basic and call it from C++. Dyalog APL/W is a fully subscribed member of this code-sharing club.

OLE Automation is, however, much more than just a mechanism to facilitate cross-application macros because it deals not just with subroutine calls but with *objects*. An object is a combination of code and data that can be treated as a unit. Without getting too deeply into the terminology, an object defines a *class*; when you work with an object you create one or more *instances* of that class.

OLE objects are represented in Dyalog APL by namespaces.

This chapter describes how you can write an OLE Automation Server in Dyalog APL.

Namespaces and Objects

There is a direct correspondence between the object model and Dyalog APL namespace technology, a correspondence that is thoroughly exploited in the implementation of OLE Automation.

An OLE object is simply a collection of methods (code that performs tasks) and properties (data that affects behaviour). An object corresponds directly to a Dyalog APL namespace which contains functions that do things and variables that affect things. Furthermore, OLE objects are hierarchical in nature; objects may contain sub-objects just as namespaces may contain sub-namespaces. To complete the picture, an OLE Server is an application that provides (exposes) one or more OLE objects. Thus an OLE Server corresponds directly to a workspace that contains one or more namespaces.

However, when you access an OLE object, you do so by creating an *instance* of its class and you may work with several instances at the same time. Furthermore, several applications may access the same OLE object at the same time, each with its own set of instances. Each instance inherits its methods (functions) and the initial values of its properties from the class. However, different property values will soon be established in different instances so they must be maintained separately.

Dyalog APL/W includes the capability for a namespace to spawn instances of itself. Initially, a new instance is simply a pointer to the original namespace (not a copy), but as soon as anything in it is changed, the new value is recorded separately. Thus instance namespaces will typically share functions but maintain separate sets of data.

Writing an APL OLE Server

The following steps are required to create an OLE Automation Server in Dyalog APL/W:

- Create a workspace containing an OLEServer namespace. This namespace
 represents an OLE Object and may contain as many functions and variables as
 you want to provide the functionality you require. It may also contain other
 OLEServer namespaces to represent sub-objects in an object hierarchy.
- 2. For each of the functions and variables that you wish to expose as methods and properties of your object, you must declare the data types of their parameters and results. You can do this manually, using the COM Properties tab of the Object Properties dialog box, or by invoking the SetFnInfo and SetVarInfo methods. Note that non-exported functions and variables, sub-namespaces and defined operators may be used internally, but are not available directly to an OLE Automation client. It is also possible to generate events from an OLEServer. The mechanism is the same as for an ActiveXControl and is described in the next chapter.
- 3. Select *Export* from the Session *File* menu and choose in-process or out-of-process COM Server as you prefer.

Rules for Exported Functions

There are certain fundamental differences between OLE syntax and APL syntax.

For example, OLE methods may take any number of arguments whereas APL is confined to two; a left and a right.

Secondly, some of the arguments or even *all* of the arguments to an OLE method may be optional. You cannot however call a monadic APL function with no arguments; in APL there is a clear distinction between niladic functions and functions that take an argument.

Furthermore, the number and type of the arguments for each OLE method must be registered in advance so that OLE knows how to call it.

These factors mean that certain rules must be adopted so that APL can register your APL functions as OLE methods.

- **Rule 1:** Exported APL functions must be niladic or monadic *defined* functions; dyadic functions, dynamic functions, derived functions and operators are not allowed. However, ambivalent functions may be called (monadically) by OLE.
- **Rule 2:** Character arrays whose rank is greater than 1 are passed as 1-byte integer arrays. This means that 1-byte integer matrices and higher-order arrays will always be converted to character arrays.

- **Rule 3:** An exported APL function may not be called with an empty numeric vector (zilde) as its single argument. Zilde is used by an APL client to call a non-niladic OLE method with no arguments.
- **Rule 4:** If an exported APL function is called with more than one parameter, its argument will be a nested vector. If it is called with a single parameter that is a character vector or an array whose rank is greater than 1, the argument supplied to the APL function will be a simple array. Effectively, a 1-element nested array received from an OLE Client is disclosed.

Out-of-Process and In-Process OLE Servers

Dyalog APL allows you to create both out-of-process OLE Servers and *in-process* OLE Servers. An *out-of-process* OLE Server runs as a completely separate Windows program that communicates with one or more client programs. An *in-process* OLE Server is implemented as a Dynamic Link Library (DLL) that is loaded into the client process and becomes part of its address space.

The main **advantage** of an *in-process* OLE Server is that communication between the client application and the OLE Server is fast. Communication between clients and *out-of-process* OLE Servers has to go through a separate OLE layer in Windows that incurs a certain overhead. Another **advantage** is that *in-process* OLE Servers are simpler to administer and simpler to install.

The main **disadvantages** of *in-process* OLE Servers is that there can only be one client per server and they do not support DCOM directly.

ClassID, TypeLibID and other properties

Windows COM objects are identified using a system of *Globally Unique Identifiers* (GUIDs). When you create an OLEServer object using **GWC**, APL creates a number of GUIDs and allocates them to the OLE Server. One of these is a *Class Identifier* (often abbreviated to CLSID) that will uniquely identify your OLE object. This is stored in the ClassID property of the OLEServer. Another GUID identifies the Dispatch interface of the object but is not available via a property.

An out-of-process COM server requires a separate Type Library file . This is a binary file that describes the methods (functions) and properties (variables) exposed by the OLEServer namespace(s) in the workspace. The Type Library is identified by a GUID and by its file name. The file name (which is constructed from the workspace name with a .TLB extension) is stored in the TypeLibFile property of the OLEServer namespace. The GUID is generated when it is first needed and is stored in the TypeLibFileID property of the OLEServer namespace. Note that if the workspace contains several OLEServer objects, their TypeLibFile and TypelLibID properties all have the same values.

Note that the equivalent information for an in-process OLE Server is bound into the DLL and not stored in a separate file.

In-process OLE Servers

Exporting

When you use File/Export to create an *in-process* OLE Server, the following steps are performed.

APL first saves your workspace to a *temporary* file. Then it creates a *temporary* Type Library File that describes each of the OLEServer objects in the workspace. Next, it creates a Dynamic Link Library (DLL) file (whose name defaults to the name of your workspace but with a .DLL extension) by merging the workspace saved in the temporary file with the file OCXSTUB.DLL. Finally, it registers your OLE Server by updating the Windows Registry. Your OLE Server DLL is self-contained and is independent of your workspace. The temporary files are then deleted.

Execution

In-process OLEServers are hosted (executed) by the Dyalog APL DLL. If you export your OLE Server with *Runtime application* checked, it will be bound with the run-time version, If this checkbox is cleared, your OLE Server will be bound by the development version.

If an in-process OLE Server, that is bound with the run-time Dyalog APL DLL generates an untrapped error, an OLE Automation error will be reported.

If an in-process OLE Server, that is bound with the development Dyalog APL DLL generates an untrapped error, the APL Session will appear and you can use it to debug the problem and continue. Note that at this point, the development DLL will load your Session file so that all of your session tools are available during debugging. If your Session file runs any initialisation code that references external files, remember that this code will be executed in the current working directory of the host process.

For further details, see *User Guide*, *Chapter 2*.

Registering and Unregistering

During development, an in-process OLE Server is automatically registered when you create it using *File/Export*.

The Windows utility REGSVR32.EXE should be used to register an *in-process* OLE Server independently, or to install a runtime in-process OLE Server on a target computer. For example:

C:\Dyalog101>regsvr32 mysvr.dll

REGSVR32 should also be used (with the /u flag) to un-register an in-process OLE Server. For example:

```
C:\Dyalog101>regsvr32 /u mysvr.dll
```

Note that in both cases, REGSVR32 actually starts the OLE Server. This in turn loads the appropriate Dyalog APL DLL. If you are using the development DLL, note that if your session start-up code fails for any reason, the REGSVR32 process will hang and have to be terminated using the Task Manager.

Out-of-process OLE Servers

Exporting

When you use File/Export to create an *out-of-process* OLE Server, the following steps are performed.

APL first creates a single Type Library File that describes all of the OLEServer objects in the workspace. It then registers your OLE Server by updating the Windows Registry with, among other things, the names and ClassIDs of your workspace and Type Library file.

Note that the type information is taken from your active workspace and not the saved workspace. It is up to you to ensure that your saved workspace (which will actually be used when the OLE Server is invoked) is kept in step.

For example, if you were subsequently to remove the OLEServer objects from your workspace and re-save it, or save a completely different workspace with the same pathname, your OLE Server would fail to start because the Type Library and Registry and no longer synchronised with your workspace.

Execution

An out-of-process OLE Server is implemented by a separate Dyalog APL process (DYALOG.EXE or DYALOGRT.EXE) that loads your workspace when it starts.

If an out-of-process OLE Server, that is bound with the *run-time* Dyalog APL program, generates an untrapped error, an OLE Automation error will be reported.

If an out-of-process OLE Server, that is bound with the *development* Dyalog APL program, generates an untrapped error, the APL Session will appear and you can use it to debug the problem and continue. In previous versions of Dyalog APL, the visibility of the APL Session for debugging was controlled by the ShowSession property. Setting ShowSession to 1 will cause the Session to be displayed immediately, when the OLE Server is started. However, setting ShowSession to 0 will not prevent the Session from appearing if an untrapped APL error occurs.

Registering and Unregistering

During development, an out-of-process OLE Server is automatically registered when you create it using *File/Export*.

An out-of-process OLEServer may also be registered by calling its OLERegister method. This performs the same tasks as *File/Export*, but without any user-interaction.

OLERegister is the recommended way to install an *out-of-process* OLEServer on a target computer as a run-time application.

An out-of-process OLEServer may be unregistered by calling its OLEUnRegister method.

Registry Entries

This section describes the entries that are written into the Windows Registry when APL registers an *out-of-process* OLEServer.

All registry entries are written as sub-keys of the primary key HKEY_LOCAL_MACHINE\SOFTWARE\Classes of which HKEY_CLASSES_ROOT is an alias. Four separate entries are created, although only the first of these applies to top-level OLEServers.

- 1. A sub-key named **dyalog.xxxx** where **xxxx** is the name of the OLEServer. This has a sub-key named **CLSID** whose *Default* value is a GUID corresponding to the ClassID property of the OLEServer.
- A sub-key named CLSID\xxxx where xxxx is the GUID corresponding to the value of the ClassID property of the OLEServer. The *Default* value of this sub-key is the name of the OLEServer, and the sub-key itself contains sub-keys, namely DyalogDispInterface, DyalogEventInterface, InProcHandler32, LocalServer32, ProgID, TypeLib, and VersionIndependentProgID.
 - 2.1. **DyalogDispInterface** and **DyalogEventInterface** have their *Default* values set to the GUID for the Interface entry (see Paragraph 4). This GUID is generated internally by the registration of the Type Library.
 - 2.2. **InProcHandler32** has the *Default* value "OLE32.DLL".
 - 2.3. **LocalServer32** has its *Default* value set to the command line that is required to start the OLEServer. This is the full path-name of the appropriate DYALOG.EXE or DYALOGRT.EXE followed by the full path-name of the corresponding workspace plus any options that were specified in the *Create bound file* dialog box.

- 2.4. **ProgID** has its *Default* value set to "dyalog.xxxx" where "xxxx" is the name of the OLEServer.
- 2.5. **TypeLib** has its *Default* value set to the GUID corresponding to the TypeLibID property of the OLEServer.
- 2.6. **VersionIndependentProgID** has its *Default* value set to "dyalog.xxxx" where "xxxx" is the name of the OLEServer (same as **ProgID**).
- 2.7. Note that for a sub-object (an OLEServer that is a child of another OLEServer) only the **InProcHandler32** key is required, although the other entries are created and are in fact redundant.
- 3. A sub-key named **TypeLib\xxxx** where **xxxx** is the GUID corresponding to the value of the TypeLib property of the OLEServer. This contains a sub-key named **1.0** (which refers to its version number). The *Default* value of **1.0** is "Type Library for xxxx" where "xxxx" is the name of the OLEServer. **1.0** contains three further sub-keys named **0**, **FLAGS** and **HELPDIR**.
 - 3.1. **0** (this identifies the language id; 0 refers to *all* languages) contains a sub-key named **win32** whose *Default* value is the full path-name of the Type Library file associated with the OLE object; i.e. the value of the TypeLibFile property of the OLEServer.
 - 3.2. **FLAGS** has a *Default* value of "0".
 - 3.3. **HELPDIR** has its *Default* value set to the full path-name of the directory in which the corresponding workspace is saved.
- 4. Sub-keys named Interface\xxxx where xxxx is the GUID referenced by the value of DyalogDispInterface and DyalogEventInterface described in paragraph 2. The Default values of these sub-keys is "xxxxdisp" where "xxxx" is the name of the OLEServer. You may identify the correct Interface sub-key by searching the registry for this string. It has three sub-keys named ProxyStubClsid, ProxyStubClsid32, and TypeLib.
 - 4.1. **ProxyStubClsid** has a *Default* value of a GUID that references an interface of type PSDispatch.)
 - 4.2. ProxyStubClsid32 (same as ProxyStubClsid).
 - 4.3. **TypeLib** has two values. Its *Default* value is the GUID identified by the TypeLib property of the OLEServer object, or, for a child OLEServer, the TypeLib property if its parent OLEServer. Its *Version* value is "1.0".

The LOAN Workspace

LOAN. DWS contains a single namespace called Loan which is used to calculate monthly repayments on a loan. As supplied, LOAN is a pure APL workspace. You will have to turn it into an OLE Server, and declare a method and a property, before you can use it.

The Loan namespace contains a single function CalcPayments and a variable PeriodType.

The CalcPayments function takes a 5-element numeric vector as an argument whose elements specify:

- 1. loan amount
- 2. maximum number of periods for repayment
- 3. minimum number of periods for repayment
- 4. maximum annual interest rate
- 5. minimum annual interest rate

CalcPayments also uses the "global" variable PeriodType which specifies whether the periods (above) are years or months. This is done solely to illustrate how another application can manipulate an APL object via its variables (properties) as well as by calling its functions (methods).

CalcPayments returns a matrix. The first row contains the period numbers (from min to max). The first column contains the interest rates (from min to max in steps of 0.5%). Other elements contain the monthly repayments for the corresponding number of periods and interest rates.

Using CalcPayments

The following session transcript illustrates how the CalcPayments function is used.

```
)LOAD LOAN
C:\Dyalog101\samples\ole\LOAN saved ...
)OBS
Loan
)CS Loan
#.Loan
)FNS
CalcPayments
)VARS
PeriodType
```

```
CalcPayments 10000 5 3 6 3
0 3 4 5
3 290.8120963 221.3432699 179.6869066
3.5 293.0207973 223.5600105 181.9174497
4 295.2398501 225.7905464 184.1652206
4.5 297.4692448 228.0348608 186.4301924
5 299.708971 230.2929357 188.7123364
5.5 301.959018 232.5647523 191.0116217
6 304.2193745 234.8502905 193.3280153
```

The CalcPayments Function

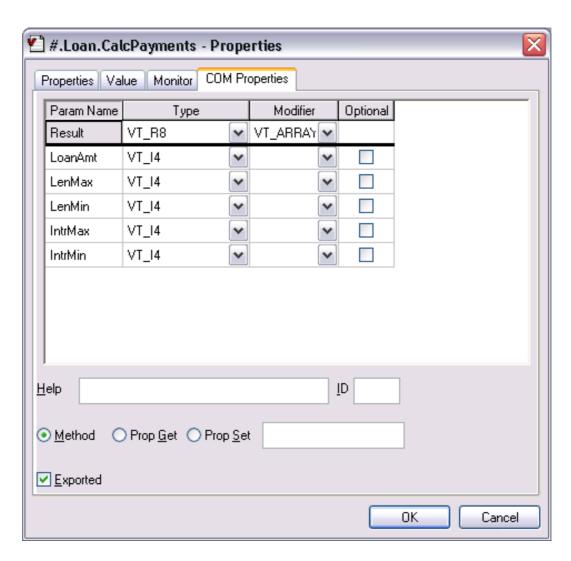
```
[0]
      PAYMENTS←CalcPayments X;LoanAmt;LenMin;LenMax;IntrMin
                    ;IntrMax;PERIODS; INTEREST;NI;NM;PER;INT
Γ1 ]
       A Calculates loan repayments
[2]
       A Argument X specifies:
[3]
                LoanAmt
                             Loan amount
            Α
[4]
                LenMax
                             Maximum loan period
            Α
[5]
                             Minimum loan period
                LenMin
[6]
            Α
                IntrMax
                             Maximum interest rate
[7]
                IntrMin
                             Minimum interest rate
[8]
       A Also uses the following global variable
[9]
           PeriodType Type of period;1 = years, 2 = months
[10]
[11]
      LoanAmt LenMax LenMin IntrMax IntrMin←X
[12]
      PER←PERIODS←-1+LenMin+11+LenMax-LenMin
[13]
[14]
      PERIODS + PERIODS × 12 1 [PeriodType]
[15]
      INT←INTEREST←0.5×-1+(2×IntrMin)+11+2×IntrMax-IntrMin
[16]
      INTEREST+INTEREST÷100×12 1[PeriodType]
[17]
[18]
      NI←pINTEREST
[19]
      NM←pPERIODS
[20]
      PAYMENTS←(LoanAmt)×((NI,NM)ρNM/INTEREST)÷
[21]
                          1-1÷(1+INTEREST) · .*PERIODS
      PAYMENTS - PER, [1] PAYMENTS
[22]
[23]
      PAYMENTS←(0,INT),PAYMENTS
```

Registering Loan as an OLE Server

To use this example, you must first

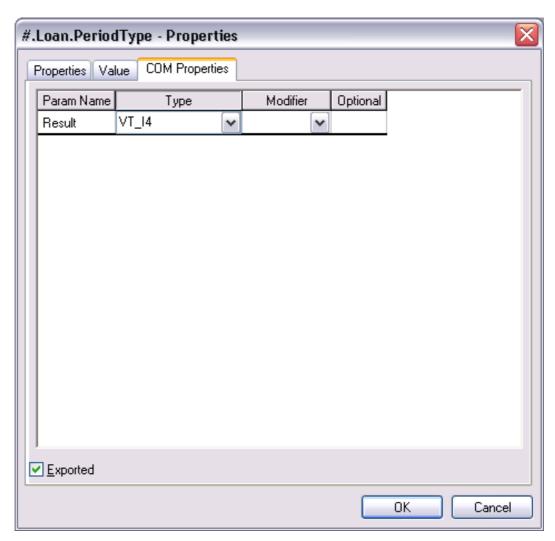
- 1. Convert the Loan namespace into an OLEServer object.
- 2. Declare the COM properties for CalcPayments and PeriodType.
- 3. Create an in-process or out-of-process server and register the Loan object on your system.

Please perform the following steps:


)LOAD the LOAN workspace from the samples \ole sub-directory

```
)LOAD SAMPLES\OLE\LOAN samples\ole\loan saved ...
)OBS
```

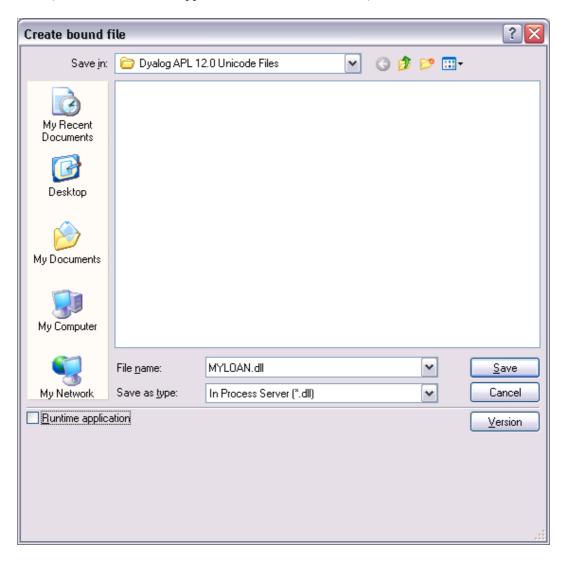
Execute the following statement to make Loan an OLEServer object:


```
Loan. ☐WC 'OLEServer'
```

Now, using the COM Properties tab of the Properties dialog box, define the syntax and data types for the CalcPayments function and the PeriodType variable so that they are exported as a method and property respectively.

The picture above shows the COM properties that are required to export function CalcPayments as a method. The function is declared to require 5 parameters of type VT_I4 (integers) and return a result of type VT_ARRAY of VT_R8 (an array of floating-point numbers).

The names you choose for the parameters will be visible in an object browser and certain other programming environments.

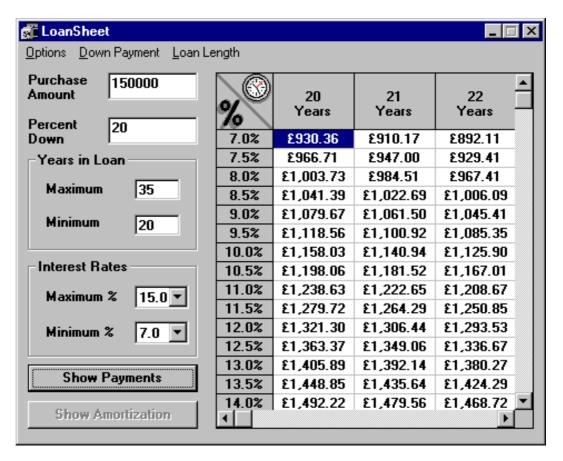


The picture above shows the COM properties to export variable PeriodType as a property. The property is declared to be of type VT_I4 (integer).

Rename and save the workspace to avoid overwriting the original:

```
)WSID MYLOAN
was SAMPLES\OLE\LOAN
)SAVE
MYLOAN saved ...
```

Finally, to create your OLE Server, choose *Export* from the Session *File* menu and complete the *Create bound file* dialog box as shown below. In this case, the OLE Server is created as an in-process server, bound to the development version of the Dyalog APL DLL (because the *Runtime application* checkbox is cleared)


Note that appropriate information will be displayed in the Status window to inform you of the success (or failure) of the operation.

Using Loan from Visual Basic Version 4.0

Start Visual Basic Version 4.0 and open the project "aplLoan.vbp" that is provided in the Dyalog APL sub-directory samples\ole\.

This project is based upon an example that is distributed with Visual Basic (vb\samples\grid\loan.vbp) and is described in the Visual Basic Programmer's Guide Chapter 13.

To run the project, select Run/Start from the Visual Basic menu bar. Then enter data into the Visual Basic application as shown below. When you click *Show Payments*, Visual Basic actually calculates the repayments matrix by calling the CalcPayments method in the dyalog.Loan object; i.e. it runs the CalcPayments function in the Loan namespace.

How it Works

The original Visual Basic code has been modified so that instead of calculating loan repayments itself, it uses the Dyalog APL Loan object to perform this task. The changes required to the original Visual Basic code were as follows.

Firstly, the declarations section specifies a variable called APLLoan to be of type Object:

Dim APLLoan As Object

Secondly, the Load procedure for the Form (this module gets executed when the application starts) contains the statement:

Set APLLoan = CreateObject("dyalog.Loan")

The effect of these two statements is that when the application is run, VB asks OLE to provide the external object called *dyalog.Loan*. This name will have been recorded in the registry by Dyalog APL when you exported the Loan object. If you exported Loan as an *out-of-process* OLE Server, OLE starts the appropriate version (development or run-time) of Dyalog APL with your workspace MYLOAN. If you exported Loan as an *in-process* OLE Server, OLE loads MYLOAN.DLL into your Visual Basic application which in turn loads the appropriate Dyalog APL DLL. When it starts, Dyalog APL recognises that the request has come from OLE and responds by creating an instance of the Loan namespace which is connected to the Visual Basic process that has requested it.

The final change was to rewrite the VB subroutine that performed the calculations to call instead the Dyalog APL Loan object

The Revised CalcPmnts() Procedure

```
Private Sub CalcPmnts()
   Dim PeriodType
   ' Calculate number of periods and interest rates ..
Periods = (LenMax - LenMin) + 1
Rates = ((IntrMax - IntrMin) * 2) + 1
If mnuOptLen(0).Checked = True Then
        PeriodType = 1
Else
        PeriodType = 2
End If
   ' Set PeriodType property of APLLoan object
APLLoan.PeriodType = PeriodType
   ' Call Calc method of APLLoan object
   Payments = APLLoan.Calc(LoanAmt, LenMax, LenMin,
IntrMax, IntrMin)
End Sub
```

The first statement to note is:

APLLoan.PeriodType = 1

In Visual Basic terms, this statement sets the PeriodType property of the APLLoan object to the value of a local variable, also called PeriodType. What actually happens, is that the APL variable PeriodType in the corresponding running instance of the Loan namespace is set to the requested value.

The next statement:

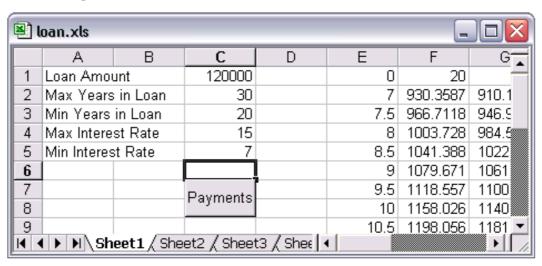
```
Payments = APLLoan.CalcPayments(LoanAmt, LenMax, LenMin, IntrMax, IntrMin)
```

calls the APL function CalcPayments and receives the result.

In Visual Basic terms, this statement invokes the CalcPayments method of the APLLoan object. In practice, it calls the CalcPayments APL function with the specified argument and puts the result in the local variable Payments. Note that the conversion between the result of the function (a Dyalog APL floating-point matrix) and the corresponding Visual Basic data type is performed automatically for you.

Notice that the APLLoan variable is "global". This means that the dyalog.Loan object is loaded only once, when the Visual basic application is started and remains loaded until it is closed.

Using Loan from Excel


Start Excel and load the spreadsheet Loan.xls from the Dyalog APL sub-directory samples\ole.

The *Payments* button fires a simple macro that uses the APL dyalog.Loan object to perform repayment calculations.

This example is slightly simpler than the Visual Basic one in that the user does not specify a down payment, nor can the user change the period type, which is years.

To run the example enter data into the cells as shown below, then click *Payments*. When you do so, Excel runs the Calc macro and this causes OLE to initialise the dyalog.Loan OLE Server

The Calc macro actually calculates the repayments matrix by calling the CalcPayments method in the dyalog.Loan object; i.e. it runs the CalcPayments function in the Loan namespace.

How it Works

The Excel macro code is shown below.

The statement:

Dim APLLoan As Object

declares a (local) variable called APLLoan to be of type Object

The next statement:

```
Set APLLoan = CreateObject("dyalog.Loan")
```

creates an instance of dyalog. Loan associated with this variable.

Effectively, when the macro is run, Excel asks OLE to provide the external object called *dyalog.Loan*.

If you exported Loan as an *out-of-process* OLE Server, OLE starts the appropriate version (development or run-time) of Dyalog APL with your workspace MYLOAN. If you exported Loan as an *in-process* OLE Server, OLE loads MYLOAN.DLL into your Visual Basic application which in turn loads the appropriate Dyalog APL DLL. In either case, an instance of the Loan namespace is connected to the Excel macro as an Object.

The next statement to notice is:

```
APLLoan.PeriodType = 1
```

In Excel terms, this statement sets the PeriodType property of the APLLoan object to the value 1. What actually happens, is that the APL variable PeriodType in the corresponding running instance of the Loan namespace is set to 1.

Finally, the following statement:

calls the APL function CalcPayments and receives the result.

In Excel terms, this statement invokes the CalcPayments method of the APLLoan object. In practice, it calls the CalcPayments APL function with the specified argument and puts the result in the local variable Payments. Note that the conversion between the result of the function (a Dyalog APL floating-point matrix) and the corresponding Excel data type is performed automatically for you.

Notice that the APLLoan variable is local to the Calc macro. This means that the dyalog.Loan object is loaded every time that Calc is run and is unloaded when it terminates.

Using Loan from two applications

If you have exported Loan as an *out-of-process* OLE Server, you may use it concurrently from two or more client applications. To test this, follow the instructions for:

- 1) Using Loan from Visual Basic Version 4.0
- 2) Using Loan from Microsoft Excel

At this stage, you have two applications (Visual Basic and Excel) connected to a single Dyalog APL process with a single workspace MYLOAN.

Each application is actually connected to a separate running instance of the Loan namespace, although there is only one copy of the CalcPayments function in memory.

Only the variable PeriodType is duplicated in the two instances of Loan.

Note that the synchronisation of OLE requests from the different applications is entirely handled for you by Dyalog APL.

Notice too that this time there is no delay each time you run the Calc macro in Excel. When you are using Loan from Microsoft Excel on its own, there *is* a delay because OLE loads Dyalog APL and the MYLOAN workspace every time you run Calc This is because the APLLoan variable is local to Calc.

However, the corresponding Visual Basic variable is global and therefore forces OLE to keep dyalog.Loan loaded.

Using Loan from Dyalog APL

It is of course possible to use Dyalog APL as both an OLE Automation client and an OLE Automation Server.

To use the dyalog.Loan object, start Dyalog APL and then enter the following expressions in the Session window.

```
'LN' □WC'OLEClient' 'dyalog.Loan'
      )OBS
LN
      )CS LN
#.LN
      )METHODS
CalcPayments
      ) PROPS
PeriodType
      CalcPayments 10000 5 3 6 3
3
    290.8120963 221.3432699 179.6869066
3.5 293.0207973 223.5600105 181.9174497
    295.2398501 225.7905464 184.1652206
4.5 297.4692448 228.0348608 186.4301924
    299.708971
                230.2929357 188.7123364
5.5 301.959018
                232.5647523 191.0116217
    304.2193745 234.8502905 193.3280153
The statement:
```

'LN'□WC'OLEClient' 'dyalog.Loan'

causes APL to ask OLE to provide the external object called *dyalog.Loan*. This name will have been recorded in the registry by Dyalog APL when you saved the MYLOAN workspace.

If you exported Loan as an *out-of-process* OLE Server, OLE starts a second Dyalog APL process (development or run-time) with your workspace MYLOAN. There are now two separate copies of Dyalog APL running; one is the client, the other the server.

If you exported Loan as an *in-process* OLE Server, OLE loads MYLOAN.DLL into the Dyalog APL program which in turn loads the appropriate Dyalog APL DLL. These DLLs are both are loaded into the same address space as the original APL process. In effect, you have two copies of APL (and two workspaces) running as a single program.

Note that in both cases, the mapping between the corresponding functions and variables is direct. Effectively, the client namespace LN is an instance of the server namespace Loan.

Implementing an Object Hierarchy

Despite the close correspondence between the object model and Dyalog APL namespace technology, there is one significant difference. OLE does not support object hierarchies in the sense that one object *contains* or *owns* another.

Instead you must implement object hierarchies using *properties* that refer to other objects and/or *methods* that return objects as results.

It is not possible to pass Dyalog APL namespace hierarchies through OLE because OLE does not support them. If you want to write an OLE Automation Server in APL that implements an object hierarchy, you must follow the OLE conventions for doing so.

You can pass an *instance* of a Dyalog APL OLEServer namespace to an OLE client as a \square OR, which can be the result of a function or the value of a variable. In order to be recognised as an OLE object, the namespace must be of type OLEServer.

In fact, when you export a workspace containing one or more OLEServer objects, any child OLEServer objects that they contain are registered too.

The CFILES Workspace (samples\ole\cfiles.dws) illustrates the use of an object hierarchy.

The CFILES Workspace

CFILES.DWS contains a single OLEServer namespace called CFiles which implements a basic object-oriented interface to Dyalog APL component files.

This example allows an OLE Client, such as Excel, to read and write APL component files. It is deliberately over-simplified but illustrates how an object hierarchy may be implemented.

Unlike the previous example, the CFILES workspace is supplied as a complete OLEServer with all of the COM properties for its methods already defined. All you have to do is to export it as a COM Server.

The CFiles namespace contains a single function OpenFile and a sub-namespace called File which is also an OLEServer. This namespace contains functions FREAD, FREPLACE, FAPPEND and FSIZE.

To use this Server, an OLE Client requests an instance of the dyalog. CF iles object.

To open a component file, an OLE Client calls OpenFile with the name of the file as its argument. This function opens the file and returns, not a file tie number as you might expect, but an instance of the File namespace which is associated with the file. As far as the client is concerned, this is a subsidiary OLE object of type dyalog. File.

To perform file operations, the client invokes the FREAD, FREPLACE, FAPPEND and FSIZE methods (functions) of the File object.

A more sophisticated example might expose each component as a subsidiary object too.

Registering CFiles as an OLE Server

In order to explore the use of an APL OLE Server using the CFILES workspace as an example, you must register the CFiles object on your system.

)LOAD the CFILES workspace from the samples\ole sub-directory

```
)LOAD SAMPLES\OLE\CFILES
samples\ole\cfiles saved ...
)OBS
CFiles
```

Then select *Export* from the Session *File* menu and create either an in-process or out-of process OLE Server.

The OpenFile Function

```
V FILE←OpenFile NAME;F;TIE

A Makes a new File object

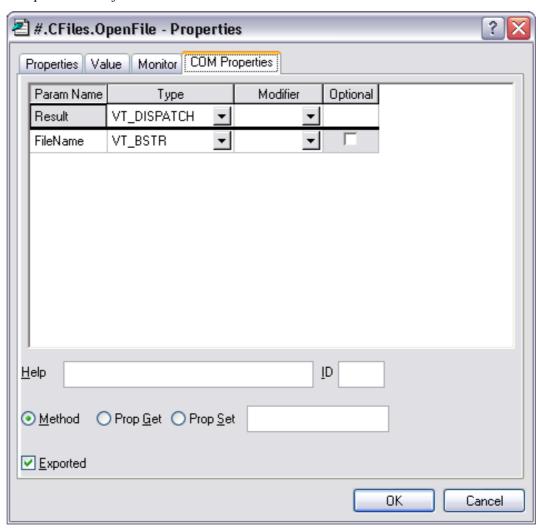
TIE←1+[/0,□FNUMS]

NAME □FTIE TIE

File.TieNumber←TIE

File.Name←NAME

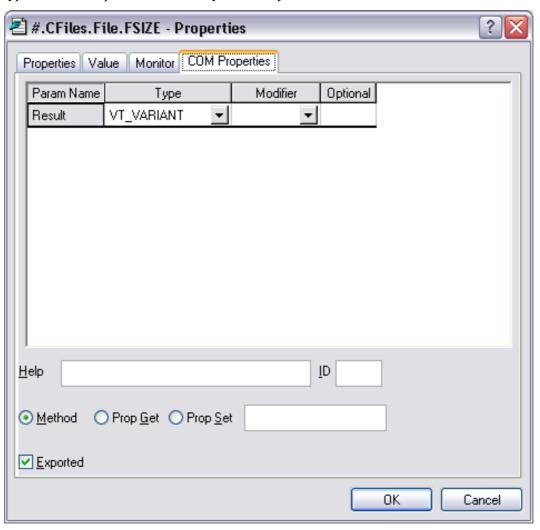
FILE←□OR'File'
```


OpenFile takes the name of an existing component file and opens it exclusively using <code>ПFTIE</code>

It returns an instance of the File namespace that is associated with the file through the variable TieNumber. This is global to the File namespace.

- OpenFile[4] sets the variable TieNumber in the File namespace to the tie number of the requested file.
- OpenFile[5] sets the variable Name in the File namespace to the name of the requested file. This is not actually used.
- OpenFile[6] creates an instance of the File namespace using \square OR and returns it as the result.

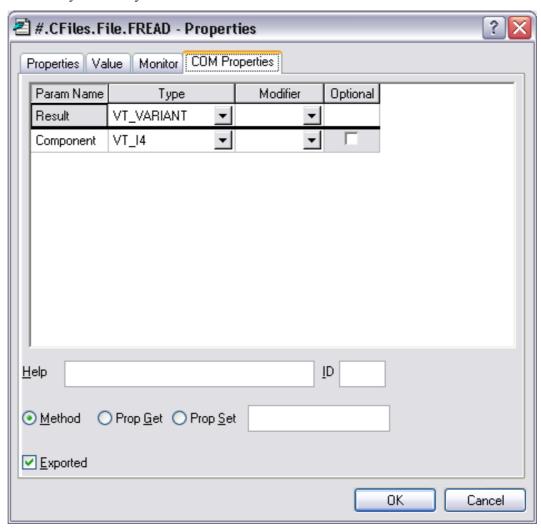
Note that there is a separate instance of File for every file opened by every OLE Client that is connected. Each knows its own TieNumber and Name.


The COM Properties dialog box for OpenFile is shown below. The function is declared to take a single parameter called *FileName* whose data type is VT_BSTR (a string). The result of the function is of data type VT_DISPATCH. This data type is used to represent an object.

The FSIZE Function

FSIZE returns the result of **FSIZE** for the file associated with the current instance of the File namespace.

The COM Properties dialog box for FSIZE is shown below. The function is declared to take no parameters. The result of the function is of data type VT_VARIANT. This data type is used to represent an arbitrary APL array.

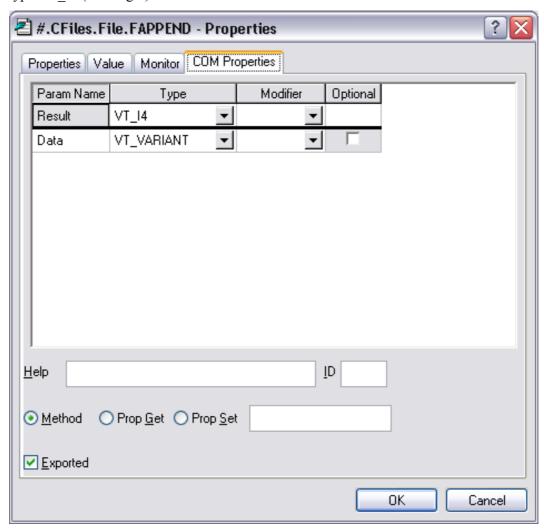


The FREAD Function

```
▼ R←FREAD N
[1] R←□FREAD TieNumber,N
▼
```

FREAD returns the value in the specified component read from the file associated with the current instance of the File namespace.

The COM Properties dialog box for FREAD is shown below. The function is declared to take a single parameter called *Component* whose data type is VT_I4 (an integer). The result of the function is of data type VT_VARIANT. This data type is used to represent an arbitrary APL array.

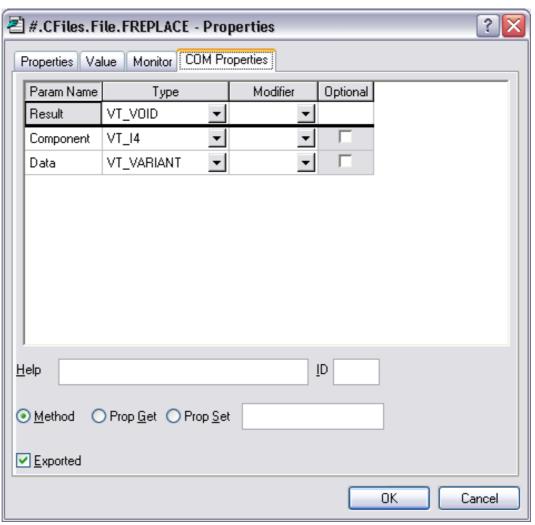

The FAPPEND Function

▼ R←FAPPEND DATA

[1] R←DATA □FAPPEND TieNumber
▼

FAPPEND appends a component onto of the file associated with the current instance of the File namespace.

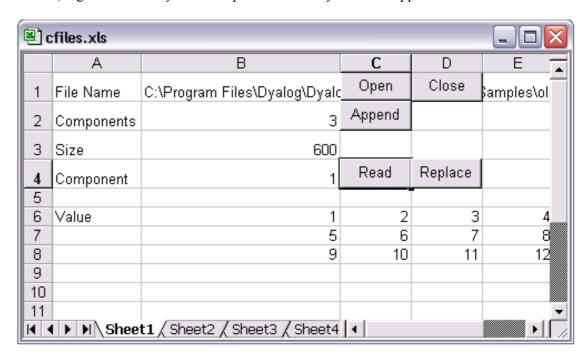
The COM Properties dialog box for FAPPEND is shown below. The function is declared to take a single parameter called *Data* whose data type is VT_VARIANT. This data type is used to represent an arbitrary APL array. The result of the function is of data type VT I4 (an integer).



The FREPLACE Function

```
▼ FREPLACE ID;I;DATA
[1] I DATA←ID
[2] DATA □FREPLACE TieNumber,I
▼
```

FREPLACE replaces the specified component of the file associated with the current instance of the File namespace.


The COM Properties dialog box for FREPLACE is shown below. The function is declared to take two parameter. The first is called *Component* and is of data type VT_I4 (integer). The second parameter is called *Data* and is of data type VT_VARIANT. This data type is used to represent an arbitrary APL array. The result of the function is of data type VT_VOID, which means that the function does not return a result.

Using CFiles from Excel

Start Excel and load the spreadsheet CFiles.xls from the Dyalog APL sub-directory samples\ole.

Please note that to simplify the Excel code, only components containing matrices (such as those contained in samples\ole\test.dcf) are handled. Components containing scalars, vectors, higher-order arrays and complex nested arrays are not supported.

To open a file, type the name of the file and click the *Open* button. This runs the FOpen procedure. A test file named test.dcf is provided in the samples\ole subdirectory.

To read a component, enter the component number and click *Read*. This runs the FRead procedure.

To replace a component, first enter the component number. Then type some data elsewhere on the spreadsheet and select it. Now click *Replace*. This runs the FReplace procedure.

To append a component, enter some data elsewhere on the spreadsheet and select it. Now click *Append*. This runs the FAppend procedure.

The FOpen Procedure

```
Public CF As Object
Public File As Object

Dim Data As Variant

Sub FOpen()
    Set CF = CreateObject("dyalog.CFILES")
    f = Cells(1, 2).Value
    Set File = CF.OpenFile(f)
    Call FSize
End Sub
```

In the declaration section, the first statement declares a global variable CF to be of data type Object. This variable will be connected to the dyalog. CFiles OLE Server object. The second statement declares a global variable File to be of data type Object. This variable will be connected to the dyalog. File OLE Server object. The third statement declares a global variable Data to be of data type Variant. This is equivalent to a nested array. This variable will be used for the component data.

The statement:

```
Set CF = CreateObject("dyalog.CFILES")
```

causes OLE to start Dyalog APL and obtain an instance of the dyalog. CFiles OLE Server object which is then associated with the variable CF. Because this variable is global, the OLE Server remains in memory and available for use.

The statement

```
f = Cells(1, 2).Value
```

gets the name of the file to be opened and puts it into the (local) variable f.

Finally, the statement:

```
Set File = CF.OpenFile(f)
```

calls the OpenFile function and stores the result (which is an object) in the global variable File.

The FRead Procedure

```
Sub FRead()
    c = Cells(4, 2).Value
    Data = File.FREAD(c)
    For r = 0 To UBound(Data, 1)
        For c = 0 To UBound(Data, 2)
        Cells(r + 6, c + 2).Value = Data(r, c)
        Next c
    Next r
End Sub
```

The statement:

```
c = Cells(4, 2).Value
```

gets the number of the component to be read and stores it in the (local) variable c.

The statement:

```
Data = File.FREAD(c)
```

This statement calls the FREAD function in the instance of the File namespace that is connected to the (global) Excel variable File. The result is stored in the variable Data.

The remaining statements copy the data from Data into the spreadsheet.

The FReplace Procedure

```
Sub FReplace()
    c = Cells(4, 2).Value
    Data = Selection.Value
    Call File.FReplace(c, Data)
    Call Fsize()
End Sub
```

The statement:

```
c = Cells(4, 2).Value
```

gets the number of the component to be replaced and stores it in the (local) variable c.

The statement:

```
Data = Selection. Value
```

gets the contents of the selected range of cells and stores it in the variable Data. This will be a 2-dimensional matrix.

The statement:

```
Call File.FReplace(c, Data)
```

calls the FREPLACE function in the instance of the File namespace that is connected to the (global) Excel variable File.

The FAppend Procedure

```
Sub FAppend()
    Dim Rslt As Variant
    Data = Selection.Value
    Rslt = File.FAppend(Data)
    Call Fsize()
End Sub
```

The statement:

```
Data = Selection. Value
```

gets the contents of the selected range of cells and stores it in the variable Data. This will be a 2-dimensional matrix.

The statement:

```
Rslt = File.FAppend(Data)
```

calls the FAPPEND function in the instance of the File namespace that is connected to the (global) Excel variable File. The result of this function is ignored.

Configuring an *out-of-process* OLEServer for DCOM Introduction

When you register an *out-of-process* OLEServer using *File/Export* or OLERegister, Dyalog APL automatically updates the Windows registry so that your OLEServer is immediately accessible to an OLE client application running on *the same* computer.

If you wish to make the same object accessible to client applications running on *different* computers (using distributed COM, or DCOM) you have to install additional registry entries on the server and on each of the clients.

Once you have established these registries entries, you should be able to access the OLEServer from Windows 95 or NT client computers in exactly the same way as if it were local; the client applications need not know where the server is located. In most cases, these additional registry entries are sufficient. However, the NT and DCOM security considerations may require the use of dcomcnfg.exe (a Microsoft utility) to set additional values. For example, if you get E_ACCESSDENIED errors when connecting from the client you may need to run dcomcnfg.exe on the server computer to assign the appropriate launch and access permissions for the OLEServer object.

The additional registry entries are described below. You may add these to the registry directly (using regedit.exe) or by running the functions provided in the DCOMREG.DWS workspace.

DCOM Registry Entries for the Server

On the computer upon which you want the OLEServer to be run, you must add the following registry entries.

1. A key under HKEY_CLASSES_ROOT\AppID whose name corresponds to the CLSID of your OLEServer object as reported by the value of its ClassID property. The (*Default*) value of this key should be the name of the server object. In addition, you must define a *RunAs* entry which specifies the manner in which a client application runs your server. The simplest choice is *Interactive User* which specifies that the client application is treated like a normal user.

For example, if you had saved an OLEServer namespace called Loan (c.f. samples\loan.dws), whose ClassID property had the value {B80E9D40-2090-11D1-8F93-0020AFABD95D} the entries would be:

HKEY_CLASSES_ROOT\AppID\{B80E9D40-2090-11D1-8F930020AFABD95D}
(Default)=dyalog.Loan
RunAs=Interactive User

2. An AppID entry to the HKEY_CLASSES_ROOT\CLSID key. (Note that this key will itself have been created by Dyalog APL/W when you saved the workspace) Once again, CLSID refers to the value of your OLEServer's ClassID property. The value of the AppID entry is the (same) CLSID.

Using the same example as above, the entry would be:

```
HKEY_CLASSES_ROOT\{B80E9D40-2090-11D1-8F93-0020AFABD95D}
AppID={B80E9D40-2090-11D1-8F93-0020AFABD95D}
```

DCOM Registry Entries for the Client

On each of the computers from which you wish to call the OLEServer object as a client, you must add the following entries.

1. Two keys under HKEY_CLASSES_ROOT that identify the object (locally) and associate it with your OLEServer Note that the local name of the object is arbitrary and may be different on each client.

```
HKEY_CLASSES_ROOT\dyalog.ServerName HKEY_CLASSES_ROOT\dyalog.ServerName\CLSID
```

- CLSID is again the CLSID of the OLEServer object (this **must** be the same as that of the server machine). dyalog. ServerName can be replaced with whatever name you want clients to use to refer to this object
- 2. Under HKEY_CLASSES_ROOT\AppID, a key whose name corresponds to the CLSID of your server object. The (*Default*) value of this key should be the name of the OLE server object (its name on the server computer). In addition, the key should contain a *RemoteServerName* entry whose value is the name of the server computer. For example:

```
HKEY_CLASSES_ROOT\AppID\{B80E9D40-2090-11D1-8F93-
0020AFABD95D}
    (Default)=dyalog.Loan
    RemoteServerName=ntsvr
```

DCOMREG Workspace

The workspace DCOMREG.DWS contains a single namespace called reg that contains three functions to help register an *out-of-process* OLE Server for DCOM.

RegDCOMServer

This function should be run on the *server* computer and is called as follows:

```
RegDCOMServer ServerName CLSID
```

Where ServerName is a character string containing the (full) name of the OLEServer (e.g. dyalog.Loan) and CLSID is a character string containing the CLSID of the server (the value of it ClassID property). For example:

```
)LOAD LOAN
.\LOAN saved ...
)COPY DCOMREG
DCOMREG saved ...

CLSID ←('Loan' □WG 'ClassID')
reg.RegDCOMServer 'dyalog.Loan' CLSID
```

RegDCOMClient

This function should be run on each of the *client* computers and is called as follows:

```
machine RegDCOMClient ServerName CLSID
```

Where machine is a character vector specifying the name of the (NT) server computer, ServerName is a character vector containing the (full) name of the OLEServer (e.g. dyalog.Loan) and CLSID is a character string containing the CLSID of the server (the value of it ClassID property). For example:

```
CLSID+'{B80E9D40-2090-11D1-8F93-0020AFABD95D}'
'NTSVR' reg.RegDCOMClient 'dyalog.Loan' CLSID
```

Config

This niladic function simply invokes the dcomcnfg.exe utility using **CMD**.

Calling an OLE Function Asynchronously

Introduction

Functions exported by an OLEServer are executed (by the underlying OLE technology) in a *synchronous* manner. This means that the OLE client must wait for the function to complete before it can continue processing.

In certain cases the client may not be interested in a result from a function and it may be desirable for client not to have to wait. For example, if a function updates files or performs a printing task, it would be nice for the client application to continue while the server performs this task in background, or indeed (using DCOM) on another computer.

For an *out-of-process* OLE Server, this can be achieved by having the function that is called directly by the client *post* an event (using $\square NQ$) onto the event queue and then return. When the function terminates, APL will take the next event from the queue and take the appropriate action. If the event has an associated callback function, APL will invoke it. Note that this happens immediately *after* the original function has terminated and a result (if any) has been returned to the client. This means that the APL OLEServer continues processing at the same time as the client application.

Note however that while the OLEServer is processing, further OLE requests will be queued. For example, if the client were to call the same function again immediately, the function would not be invoked until the original processing has finished and the client would therefore wait (note that OLE itself will actually time-out after a certain period). Nevertheless, this technique is an effective way to offload batch processing tasks to a second (background) APL process or to one running on a different computer.

The OLEASYNC Workspace

The OLEASYNC workspace illustrates this technique. It contains a single namespace called Async which exports 2 functions (methods), PRINT and ASYNC and two variables (properties) ERRCODE and COPIES.

The first function, PRINT, prints a specified number of test pages in the background. PRINT does not actually do any printing. All it does is to associate a second function PRINT_CB as a callback on a user-defined event 3001 (the choice of 3001 is purely arbitrary). It then posts an event 3001 onto the queue and returns 0 as its result.

The function also illustrates the use of : Trap. Should either of the statements on lines [3] and [4] fail, the function terminates cleanly and returns DM instead.

```
▼ R←PRINT N

[1] A Prints N test pages "in background"

[2] :Trap 0

[3] '.'□WS'Event' 3001 'PRINT_CB'N

[4] □NQ'.' 3001

[5] (R ERRCODE)←0

[6] :Else

[7] (R ERRCODE)←□DM □EN

[8] :EndTrap
```

The actual printing is performed by PRINT_CB after PRINT has returned to the client and while the client itself continues processing. It too uses: Trap to terminate cleanly should an error occur.

```
∇ N PRINT CB MSG;PR;I;M

[1]
       A Callback function : prints N test pages
[2]
       :Trap 0
[3]
[4]
             PR'□WC'Printer'
            :For I :In ιN
                 'PR.'□WC'Text'(20 60p'Testing')(0 0)
[5]
                 1 □NQ'PR' 'NewPage'
[6]
[7]
            :EndFor
[8]
            ERRCODE ← 0
[9]
        :Else
[10]
            ERRCODE+□EN
[11]
        :EndTrap
```

Note that the client can (later) query ERRCODE to find out whether or not the operation succeeded. Indeed, referencing ERRCODE will synchronise the client and server because the server will have to wait until PRINT_CB completes before it can service the request for the value of ERRCODE.

The ASYNC function illustrates a slightly different approach and may be used to execute any expression asynchronously. It simply associates its argument (a character vector) as an expression to be executed when (user-defined) event 3001 occurs. It then *posts* this event onto the queue as before.

```
▼ R←ASYNC CMD

[1] A Executes expression CMD "asynchronously"

[2] :Trap 0

[3] '#.Async'□WS'Event' 3001 'DO'CMD

[4] □NQ'#.Async' 3001

[5] (R ERRCODE)←0

[6] :Else

[7] (R ERRCODE)←□DM □EN

[8] :EndTrap
```

The callback function DO is invoked (later) when the event 3001 is processed from the event queue. This happens immediately after the function ASYNC has returned its result to the client workspace. DO simply executes its left argument, which is the string that was supplied as the right argument to ASYNC.

You may wonder why it is necessary to use a callback function as opposed to an execute expression. In particular, why not have ASYNC[3] as follows?

```
[3] '#.Async'□WS'Event' 3001 '±CMD'
```

The reason is that whilst a callback will execute in the *instance* of the OLEServer namespace connected to this client (which is what we want), an execute expression will be executed in the master OLEServer namespace itself.

The namespace contains a fourth function called LPR which is designed to be called via ASYNC using an expression such as ASYNC 'LPR'.

```
∇ LPR;PR;I
[1]
         :Trap 0
[2]
[3]
               'PR'□WC'Printer'
              :For I :In ¿COPIES
                   'PR.'□WC'Text'(20 60ρ'Testing')(0 0)
1 □NQ'PR' 'NewPage'
[4]
[5]
[6]
              :EndFor
[7]
             ERRCODE+0
[8]
         :Else
[9]
              ERRCODE+□EN
[10]
         :EndTrap
```

Note that the number of copies to be printed is defined by the (global) variable COPIES whose default value is 1. This is done only to illustrate that LPR called via DO runs in the correct instance of the OLEServer (using *your* value of COPIES) as opposed to in the master OLEServer namespace itself.

Testing dyalog.Async

Load OLEASYNC and then register dyalog. Async as an OLE object by doing the following:

```
Async.□WC 'OLEServer'
'Async'□WS'ExportedFns' ('PRINT' 'ASYNC')
'Async'□WS'ExportedVars' ('ERRCODE' 'COPIES')
```

Rename the workspace to avoid overwriting the original and)SAVE it.

```
)WSID MYASYNC
)SAVE
```

Finally, register the OLE Server using *File/Export*. **Note that dyalog.Async will only work as an out-of-process OLE Server**.

Now clear the workspace and test dyalog. Async using Dyalog APL as an OLE client application. You could also try calling it from Excel. Note that the results from the functions PRINT and ASYNC are returned immediately.

```
)CLEAR
clear ws
'TEST' [WC 'OLEClient' 'dyalog.Async'

TEST.PRINT 3

TEST.ERRCODE

TEST.COPIES+2
TEST.COPIES

TEST.ASYNC 'LPR'

TEST.ASYNC 99 A Wrong!

TEST.ERRCODE
```

CHAPTER 13

Writing ActiveX Controls in Dyalog APL

An ActiveX Control is basically a user-defined control that may be included in GUI applications and Web Browsers.

This chapter describes how you write ActiveX Controls in Dyalog APL/W.

A Dyalog APL ActiveX Control can be used by any other application that supports ActiveX. Such applications include Microsoft Visual Basic, Microsoft Excel, Microsoft Internet Explorer, Netscape Navigator with the NCompass ScriptActive Plug-In and of course Dyalog APL itself.

This chapter also includes a tutorial which teaches you how to:

- Create an ActiveX control in Dyalog APL
- Define and Export Properties, Methods and Events
- Include your ActiveX control in a Visual basic application
- Run your ActiveX control from a Web Browser.

Please note that the Visual Basic examples described in this Chapter were developed and tested with Visual Basic Version 5 and may require some modification to work with other versions of Visual basic.

Overview

What is an ActiveX Control?

An ActiveX Control is a dynamic link library that represents a particular type of COM object. When an ActiveX Control is loaded by a host application, it runs *in-process*, i.e. it is part of the host application's address space. Furthermore, an ActiveX Control typically has a *window* associated with it, which normally appears on the screen and has a user interface.

An ActiveX Control is usually stored in file with the extension .OCX. The functionality provided by the control can be supplied entirely by functions in that file alone, or can be provided by other dynamic link libraries that it loads and calls, i.e. an ActiveX Control can be stand-alone or can rely on one or more other dynamic link libraries.

What is a Dyalog APL ActiveX Control?

An ActiveX Control written using Dyalog APL is also a file with a .OCX extension. The file combines a small dynamic link library *stub* and a workspace. The functionality of the control is provided by the functions and variables in the workspace combined with a dynamic link library version of Dyalog APL named DYALOG120.DLL or DYALOG120RT.DLL that is normally installed in the Windows System directory.

Note that an ActiveX Control written in Dyalog APL is a GUI object that has a visible appearance and a user interface.

To write an ActiveX Control in Dyalog APL, you use **WC** to create an ActiveXControl object, as a child of a Form. An ActiveXControl is a container object, akin to a Group or a SubForm, that may contain a whole range of other controls such as Edit, Combo, Button and Grid objects. You may populate your ActiveXControl with other objects at this stage and save them in the workspace. However, you may prefer to create these subobjects when an instance of the ActiveXControl is created. This happens when your control is loaded by a host application.

All the functions and variables that represent methods and properties through which the ActiveXControl object exports its functionality, reside within the ActiveXControl namespace.

You may turn a workspace containing one or more ActiveXControl objects into an installable OCX file by selecting the *Export* menu item from the Session *File* menu.

Note that a single OCX file can therefore contain a number of ActiveX Controls.

When a Dyalog APL ActiveX Control is loaded by a host application, functions in the stub load the appropriate Dyalog APL dynamic link library into the host application. This in turn copies the appropriate parts of the workspace from the .OCX. If the same host application starts a second (different) ActiveX Control written in Dyalog APL, the appropriate parts of the second workspace are merged with the first. For further details, see the section entitled Workspace Management.

The Dyalog APL DLL

ActiveXControls are hosted (executed) by the Dyalog APL DLL. For further details, see *User Guide, Chapter 2*.

Instance Creation

When a host application creates an instance of an ActiveXControl object, the new instance generates a Create event. It is recommended that you make any GUI objects that you need within the ActiveXControl *at this stage*, rather than making them in advance and saving them in the workspace.

The reason for this is that until an instance of an ActiveXControl is created, its Size and ambient properties are not known. Ambient properties include the font (which may affect the size and position of the internal controls) and background and foreground colours. These are specified by the host application and should normally be honoured by the ActiveXControl. Although when you are developing an ActiveXControl it will have a specific size, the size of an *instance* of the object cannot be predicted in advance because it is determined by the host application. This alone is sufficient reason to delay the creation of sub-objects inside the ActiveXControl until the Create event occurs.

In addition to the Create event, ActiveXControl objects support a PreCreate event. This event is always generated before a Create event and signals the creation of a newly cloned namespace. However, it is reported *before* the host application has assigned it a *window*. You may therefore not use the PreCreate event to create sub-objects, but you may use it for other initialisation tasks if applicable. Many host applications distinguish between design mode, when the user may just place controls in a GUI framework, and run mode when the controls become fully active. Some applications, such as Microsoft Access, do not require the control to appear fully in design mode, but instead represent the control by a simple rectangle or bitmap. In these cases, the ActiveXControl will generate a PreCreate event in design mode and not generate a Create event until runtime. Others, like Visual Basic, require that the control appears in design mode as it would appear in the final application. In these cases, the Create event follows immediately after PreCreate.

Properties, Methods and Events

Typically, an ActiveX Control provides Properties, Methods and Events that allow the control to be configured and controlled by a host application.

The information about the properties, methods and events exported by an ActiveX Control is normally stored in its .OCX file. The information includes the name of each property and its data type, and the name and data type of each method and each of its arguments. The information for an event is similar to that for a method. In addition to these obligatory items, it is possible to include help strings and help ids which provide on-line documentation for the host application programmer

Dyalog APL provides facilities for you to specify all this information in one of two ways; using dialog boxes or by calling methods.

Firstly, the Properties dialog box for an ActiveXControl object includes three additional tabs named *COM Properties*, *COM Functions* and *COM Events*. These dialog boxes allow you to export variables as properties, to export functions as either properties or methods, and to export events. In addition, the individual Properties dialog boxes for all the functions and variables in an ActiveXControl namespace have an additional *COM Properties* tab which performs the same function. Examples of these dialog boxes are provided in the tutorial section of this chapter.

Secondly, the ActiveXControl object provides three (internal) methods that allow you to specify this information by executing APL statements. These methods are named SetVarInfo, SetFnInfo and SetEventInfo and examples of their use is given in the tutorial.

Generating Events

Events that are generated by Dyalog APL GUI objects *inside* an ActiveXControl are purely internal events and are not detectable by a host application. However, an ActiveXControl object may generate an arbitrary event for a host application using **DNQ** with a left argument of 4.

An external event must have a name (numbers are not allowed) and may include one or more parameters that supply additional information. The name of the event and the name and data types of each of its parameters must be defined in advance using the COM Events tab of the Properties dialog box of the ActiveXControl object, or by calling its SetEventInfo method.

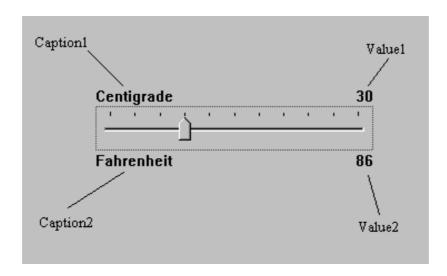
For example, the Dual control described in the tutorial has an event called ChangeValue1. This event supplies a parameter named Value1 that has a data type of VT_PTR to VT_I4 (pointer to an integer). The Dual control *generates* the event for the host application by executing the statement:

4 □NQ '' 'ChangeValue1' Value1

where Value1 is the new value of its internal Slider control.

A host application may choose to ignore an event generated by an ActiveXControl, or it may attach a callback function that performs some action in response to the event. A callback function in the host application receives the parameters supplied by the event as parameters to the function. If the host application is Dyalog APL itself, the callback function receives the parameters as part of the event message.

A host application callback function may not return a result. However, it may modify any of the parameters that were supplied as part of the event message if those parameters are defined as pointers (VT_PTR to xxx).


The result of 4 $\square NQ$ is therefore a vector whose elements correspond to the pointer parameters in the order they were specified. The result does not contain elements for parameters that were not exported as pointers and may therefore be empty. In the above example, the result of 4 $\square NQ$ is a 1-element vector containing the, possibly modified, value of Value1.

The Dual Control Tutorial

The ActiveX control we will use in this example is deliberately an extremely simple one; so that the intricacies of the control itself do not get in the way of the principles involved. In practice, there are actually very few restrictions concerning the complexity of the ActiveX control, and it is perfectly possible to package complete multiple-window Dyalog APL applications in this way.

Your ActiveX control will be called a *Dyalog Dual Control* and is based on the Dyalog APL TrackBar object.

The Dual control allows the user to enter a number using a slider, whilst displaying its value in two different units. For example, you could use it to enter a temperature value which is displayed in both Centigrade and Fahrenheit units. Equally, the same control could be used to enter a measurement of length which is concurrently displayed in centimetres and inches.

Methods

None. (The Dual control provides no methods.)

Properties

The Dual control provides the following properties:

Property	Description	
Caption1	A text string that describes the primary units. This is displayed in the top left corner of the object.	
Caption 2	A text string that describes the secondary or derived units. This is displayed in the bottom left corner of the object.	
Value1	The current value of the control measured in primary units	
Value2	The current value of the control measured in secondary units.	
Intercept	Used to derive Value2 from Value1	
Gradient	Used to derive Value2 from Value1	
Min	The minimum value of Value1	
Max	The maximum value of Value1	

Value 2 is derived from Value 1 using the expression:

Value2←Intercept+Gradient×Value1

Events

Your Dual control will generate a *ChangeValue1* event whenever the user alters Value1 using the slider.

The event message will contain a single parameter (the new value) which may be modified by the host application.

In other words, every time the value in the control changes, the host application may detect this as an event and has the opportunity to override the user.

Your Dual control will also generate a *ChangeValue2* event whenever the derived value in the control (Value2) changes. This event is reported for information only.

Introducing the Dual Control

To save time, the basic APL code for the Dual control has already been written. However, you will have to turn it into an ActiveX control yourself.

1. Load the DUALBASE workspace:

)LOAD SAMPLES\ACTIVEX\DUALBASE

- 2. Run the function TEST and observe how the 2 Dual controls behave.
- 3. View the function TEST and observe how 2 separate instances of the Dual namespace F.D1 and F.D2 have been created using OR and NS.
- 4. Using the Dyalog APL Workspace Explorer, open up the various namespaces. See how F.D1 and F.D2 are clones of Dual.
- 5. Open the function Dual. Create and see how the individual components of the control are defined.
- 6. Close the Form F.

Changing Dual into an ActiveX Control

1. Change the name of the workspace to DUAL:

```
)WSID DUAL
```

2. Make a new namespace called F

)NS F

- 3. Using the Workspace Explorer, move the Dual namespace into F, so that Dual is a child namespace of F.
- 4. Now edit the function F. Dual. Create and make the following changes:
- 5. Remove all references to the local variable POSITION. This change is required because an ActiveX control has no say in its position within its parent. (Hint: use the Search/Replace dialog to remove all occurrences of POSITION+)
- 6. Remove the right argument, SIZE and change Create[1] from:

```
H W←SIZE
to
H W←Size
```

This change allows the control to fit itself within the space allocated by the host application.

7. Change Create[4] from:

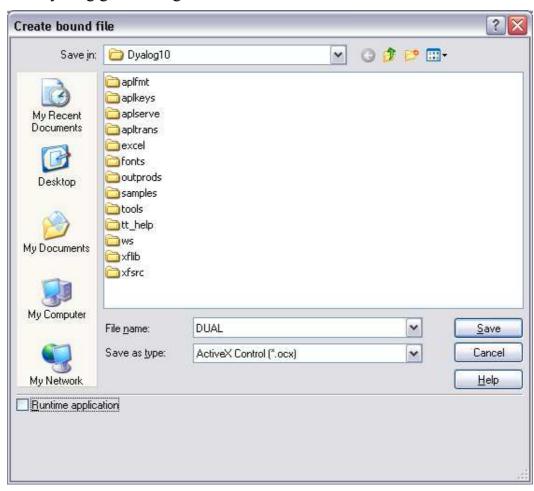
```
CH←⊃##.GetTextSize 'W'
to
CH←⊃GetTextSize 'W'
```

The original code was designed to pick up the character height from the parent Form. The ActiveXControl object does this automatically via its own GetTextSize method.

After making these changes, the Create function should be as follows:

```
∇ Create; H; W; POS; SH; CH; Y1; Y2
```

```
[1]
       H W←Size
[2]
       SH←40 A Default Trackbar height
[3]
       POS \leftarrow 2 \uparrow [0.5 \times 0] (H-SH)
[4]
       CH←⊃GetTextSize'W'
[5]
       'Slider'□WC'TrackBar'(POS)('Size'SH W)
       Slider.(Limits AutoConf)+(Min,Max)0
[6]
      [7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
       CalcValue2
[16]
       V2'□WC'Text'(⊽Value2)(Y2,W)
                    ('HAlign' 2)('AutoConf' 0)
```


8. Open the function F.Dual.Build. This function turns the Dual's parent namespace into a Form (an ActiveXControl currently requires a parent Form) and turns Dual itself into an ActiveXControl. It then attaches functions Create and Configure as callbacks on the Create and Configure events of the ActiveXControl object itself.

- 9. Run function F.Dual.Build. You should see a Form containing a single instance of the Dual control. Please resist any temptation to play with it at this stage; we want it to be in its default state for when we save it.
- 10. Type the following expression; note that the ClassID, which uniquely identifies your control, is allocated when you create the ActiveXControl object.

```
F.Dual.ClassID
```

- 11. Save the workspace (DUAL.DWS).
- 12. From the Session File menu, select Export, choose where you want to save your OCX, and then click Save. It is a good idea to clear the

Runtime application checkbox so that you can debug the control if anything goes wrong.

Testing the Dual Control

- 1. Close Dyalog APL
- 2. Start Visual Basic and click Standard EXE.
- 3. Click the right mouse button in the leftmost toolbox and select *Components* from the pop-up menu.
- 4. Locate the control named *Dyalog DUAL Objects*, set its check box on and click OK. This adds a tool for the Dual control to the Visual Basic designer toolbox.
- 5. Click on the new tool and drag out an outline on your Form. An instance of the Dual control will appear.
- 6. Repeat step 5 to position a second instance of the Dual control on your Visual Basic Form.
- 7. Select Run/Start from the Visual Basic menubar.
- 8. Exercise the 2 Dual controls.
- 9 Select Run/End from the Visual Basic menubar
- 10. Click on one of the Dual controls and scroll through its Property list. Notice that all the properties listed are standard Visual Basic ones; there are no properties (or indeed methods and events) exported. We will learn how to do this next.
- 11. Close Visual Basic; do not save the project.

Defining and Exporting Properties

- 1. Start Dyalog APL and load the DUAL workspace (Hint: use the File menu; it will be the most recently saved file).
- 2. Change space into the F. Dual namespace.

)CS F.Dual

3. The properties we wish to export are:

Caption1	Description of the primary set of units	
Caption2	Description of the secondary set of units	
Value1	The primary value in the control	
Min	Minimum for Value1	
Max	Maximum for Value1	
Intercept	Used to derive the secondary value (Value2)	
Gradient	Used to derive the secondary value (Value2)	

[1]

Although we could export all these properties as *variables*, it is generally more useful to employ *Get* and *Put* functions. The reason for this is that there is no mechanism to detect when the host application changes a property/variable; nor is there any mechanism to prevent it assigning an inappropriate value. The *Get* and *Put* functions you need are listed below. To save you time, you can copy them in from the workspace DUALFNS.

)COPY SAMPLES\ACTIVEX\DUALFNS

```
∇ R←GetCaption1

[1]
       R←Caption1

∇ SetCaption1 C

[1]
       Cap1.Text←Caption1←C

∇ R←GetCaption2

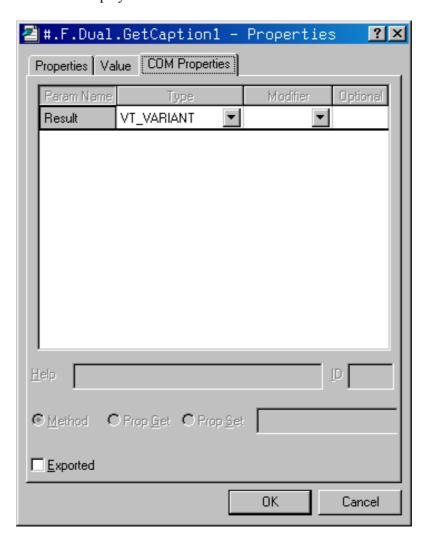
[1]
       R←Caption2

∇ SetCaption2 C

[1]
       Cap2.Text←Caption2←C

∇ R←GetIntercept

[1]
       R+Intercept
     ∇ SetIntercept I
[1]
       Intercept+I
[2]
       CalcValue2
       V2.Text←⊽Value2
[3]

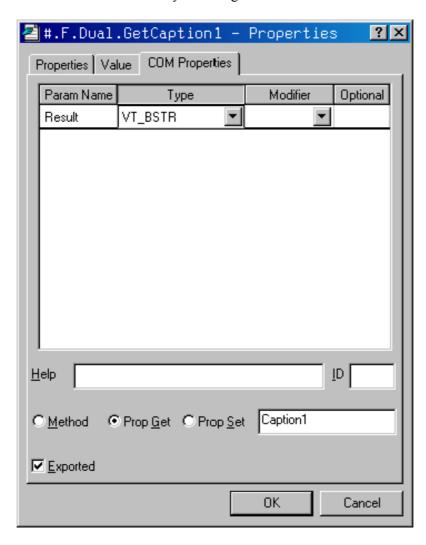

∇ R←GetGradient

[1]
       R←Gradient
     ∇ SetGradient G
[1]
       Gradient+G
       CalcValue2
[2]
[3]
       V2.Text←⊽Value2
     ∇ R←GetValue1
[1]
       R←Value1
     ∇ SetValue1 V
```

1 □NQ'' 'ChangeValue'V

The *Get* functions need no explanation; they simply return the value of the corresponding variable. The *Set* functions assign a new value to the corresponding variable **and** update the control accordingly. SetValue1 does this by enqueuing a Scroll event to the Slider, which in turn invokes the ChangeValue callback.

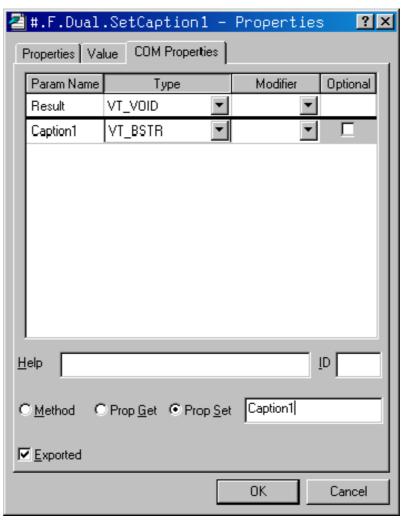
- 4. Display the Object Properties dialog box for the function **GetCaption1**. (Hint: use the Workspace Explorer).
- 5. Select the *COM Properties* tab. As you have not yet defined any OLE attributes, the default display is as follows:

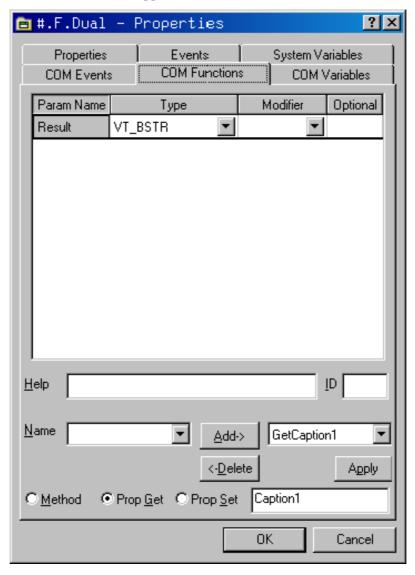

Check the *Exported* option button.

Change the data type for the *Result* to *VT_BSTR* (a text string).

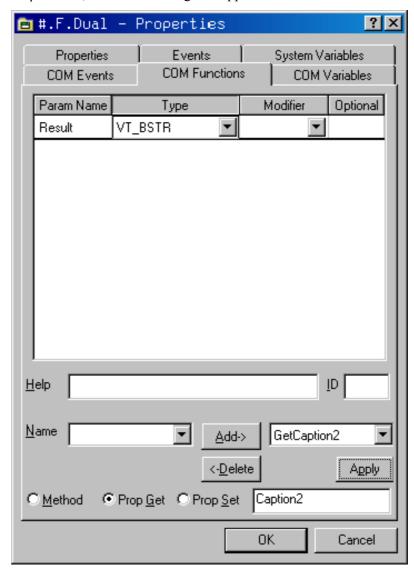
Check the *Prop Get* radio button to indicate that this is a *Property Get* function and enter the name of the property (Caption1) to which it applies.

Note that it is not necessary for the property name referenced by the *Get* and *Put* functions to correspond to a variable name, although in this case it does.


The final COM Properties dialog box for <code>GetCaption1</code> should appear as follows. Click OK to save your changes.


Now do the same for the SetCaption1 function. This function takes an argument which it expects to be a character vector. It must therefore be defined as having a single parameter of data type VT_BSTR; the parameter name is unimportant. However, you must ensure that the Optional button is unchecked.

In APL terms, the function does not return a result. However, in OLE terms the result is defined to be of type *VT_VOID*. Alternatively, you may just leave this field empty.



6. An alternative way to define the syntax for exported functions is to use the COM Functions tab in the Properties dialog box for the ActiveXControl object itself. (Hint: using the Workspace Explorer, open F so that its contents, Dual, are displayed in the right-hand list, select Dual, then click Props). The COM Functions tab should appear as follows:

7. The right-hand Combo box allows you to view and edit their syntax for the exported functions you have already defined. The left-hand Combo box displays the list of other non-exported functions that are defined in the ActiveXControl.

8. Select GetCaption2 from the left-hand Combo box, and then click Add. The dialog box will change to display the default syntax for GetCaption2. Alter the Result data type to VT_BSTR, select Prop Get, and enter the name of the property, Caption2, so that the dialog box appears as follows:

9. The third way to define the syntax for exported functions is to use the SetFnInfo method of the ActiveXControl object. This allows you to export functions using APL code, which in some circumstances may be more convenient than filling in dialog boxes.

The SetFnInfo method requires the name of the function, its syntax, a help id, a code which specifies its type (0 = method, 2 = property get, 4 = property put) and, if appropriate, the name of the property to which it applies, i.e.

SetFnInfo fn syntax helpid type property

The function *syntax* is a nested array whose first element defines the function's result and whose subsequent elements define each of its parameters. Each syntax specifier is a single character string that defines a data type, or a pair of character strings. If so, the first string for the result defines a help string, and the first string for each parameter defines its name.

The following table describes the information we must specify for each of the functions to be exported:

Exported Functions

Function	Result	Parameter		Get/	Property
		Name	Type	Put	
GetCaption1	VT_BSTR			Get (2)	Caption1
GetCaption2	VT_BSTR			Get(2)	Caption2
GetGradient	VT_R8			Get(2)	Gradient
GetIntercept	VT_R8			Get(2)	Intercept
GetValue1	VT_I4			Get(2)	Value1
SetCaption1	VT_VOID	Caption1	VT_BSTR	Put(4)	Caption1
SetCaption2	VT_VOID	Caption2	VT_BSTR	Put(4)	Caption2
SetGradient	VT_VOID	Gradient	VT_R8	Put(4)	Gradient
SetIntercept	VT_VOID	Intercept	VT_R8	Put(4)	Intercept
SetValue1	VT_VOID	Value1	VT_I4	Put(4)	Value1

From this table we can easily construct the corresponding SetFnInfo statements. For example, the statement for GetCaption1 is:

```
SetFnInfo 'GetCaption1' 'VT_BSTR' <sup>-</sup>1 2 'Caption1'
```

Note that $^{-1}$ in the 3rd element of the right argument specifies that there is no help id

Open the function F.Dual.EXPORT; this contains statements to export all of the *Get* and *Put* functions we need.

Run the function and save the workspace.

```
) CS
#
F.Dual.EXPORT
) SAVE
```

Then, re-export the workspace, updating your .OCX file with all the new information.

Setting Properties from Visual Basic

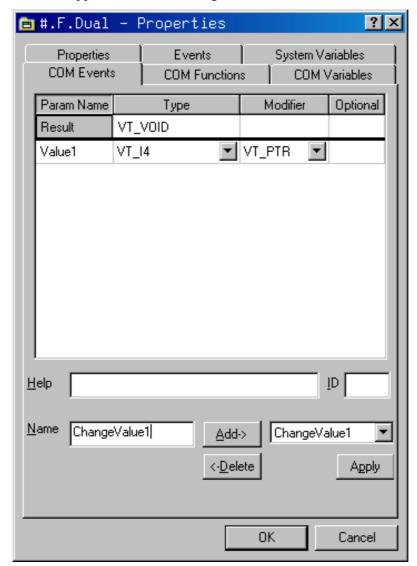
- 1. Close Dyalog APL
- 2. Start Visual Basic and click Standard EXE.
- 3. Click the right mouse button in the leftmost toolbox and select *Components* from the pop-up menu.
- 4. Locate the control named *Dyalog DUAL Objects*, set its check box on and click *OK*. This adds a tool for the Dual control to the Visual Basic designer toolbox.
- 5. Click on the new tool and drag out an outline on your Form. An instance of the Dual control (called Dual1) will appear.
- 6. In the Properties dialog box, set the Dual1 properties as follows:

Caption1	Centimetres		
Caption2	Inches		
Gradient	0.3937		
Intercept	0		

- 7. Repeat step 5 to position a second instance of the Dual control (Dual2) on your Visual Basic Form.
- 8. Double-click the left mouse button over your Form (*Form1*). This will bring up the code editor dialog box. Edit the Form_Load() subroutine, entering the following program statements. This code will be run when Visual Basic starts your application and loads the Form *Form1*. It illustrates how you can change the properties of your Dyalog APL ActiveX control dynamically.

```
Private Sub Form_Load()
Dual2.Caption1 = "Inches"
Dual2.Caption2 = "Centimetres"
Dual2.Intercept = 0
Dual2.Gradient = 2.54
End Sub
```

- 9. Now test your application by selecting Run/Start from the menubar. When you have finished, select Run/End.
- 10. Exit Visual Basic; do **not** save the Project or the Form.


Defining and Exporting Events

- 1. Start Dyalog APL and load the DUAL workspace (Hint: use the *File* menu; it will be the most recently saved file)
- 2. Using the Workspace Explorer, open the callback function F.Dual ChangeValue and alter ChangeValue[2] from:

```
Value1←⊃<sup>-</sup>1↑MSG
to
Value1←⊃4 [NQ '' 'ChangeValue1' (⊃<sup>-</sup>1↑MSG)
```

Then close the function. Previously, the ChangeValue function simply accepted the new value (of the TrackBar thumb) that it received as the last element of the event message. Now it generates an external *ChangeValue1* event for the host application using 4 \square NQ. The host may in turn modify the new value which is returned as the result of the expression. Thus not only can Dyalog APL generate events which are detectable by the host application, it can also accept modifications.

- 3. Again using the Workspace Explorer, open the Properties dialog box for the Dual object itself and select the *COM Events* tab.
 - 3.1. Enter the name of the event ChangeValue1 into the edit box labelled *Name*.
 - 3.2. Click Add
 - 3.3. Click the right mouse button over the *Result* row and select *Insert*
 - 3.4. Change the name *Param1* to *Value1*, the *Type* to *VT_I4* and the *Modifier* to *VT_PTR*. This defines the event to supply a pointer to an integer. The fact that it is a *pointer* means that the (integer) parameter may be modified by the host application.

The final appearance of this dialog box should be as follows:

Click OK, change back to the root space, and save the workspace
)CS #
)SAVE

5. Select File/Export and rebuild your OCX file.

Using Events from Visual Basic

- 1. Close Dyalog APL
- 2. Start Visual Basic and click Standard EXE.
- 3. Click the right mouse button in the leftmost toolbox and select Components from the pop-up menu.
- 4. Locate the control named Dyalog DUAL Objects, set its check box on and click OK. This adds a tool for the Dual control to the Visual Basic designer toolbox.
- 5. Click on the new tool and drag out an outline on your Form. An instance of the Dual control (called Dual1) will appear.
- 6. Select the label tool and add a label object to the Form. Select its Font property and change it to 14-point bold.
- 7. Double-click over Dual1 to bring up the code window. Notice how Visual Basic presents you with a skeleton subroutine for the (only) event ChangeValue1 which we have just defined and exported. Notice too that Visual Basic knows that the single parameter is named Value1 and that its data type is Long (VT_I4).
- 8. Enter the following code, then close the code window.
- 9. Private Sub Dual1 ChangeValue1(Value1 As Long)
- 10. Label1.Caption=Str(Value1)
- 11. End Sub
- 12. Start the application using Run/Start. Exercise the Dual control and observe that Visual Basic updates the Label1 control in response to the ChangeValue1 events. When you have finished, select Run/End.
- 13. Double-click over Dual1 to bring up the code window. Alter the Dual1 ChangeValue subroutine to the following, then close the code window.
- 14. Private Sub Dual1 ChangeValue1(Value1 As Long)
- 15. Value $1=2*(Value 1 \setminus 2)$
- 16. Label1.Caption=Str(Value1)
- 17. End Sub
- 18. Start the application using Run/Start. Exercise the Dual control and observe that now the slider moves in increments of 2. When you have finished, select Run/End.
- 19. Close Visual Basic; do not save anything.

Using Dual in a Web Page

This part of the tutorial can be run using any Web Browser that supports ActiveX. These include Microsoft Internet Explorer and Netscape Navigator with the NCompass ScriptActive Plug-In.

1. Start Dyalog APL and load the DUAL workspace again.

```
)LOAD DUAL
)CS F.Dual
```

- 2. Look at the function WRITE_HTML. This function writes a very simple page of HTML that loads your Dyalog APL ActiveX control. The left argument to the function is a title for the page; the right argument is the full pathname for the file. The function references the control by embedding its ClassID in the HTML document.
- 3. Now run it:

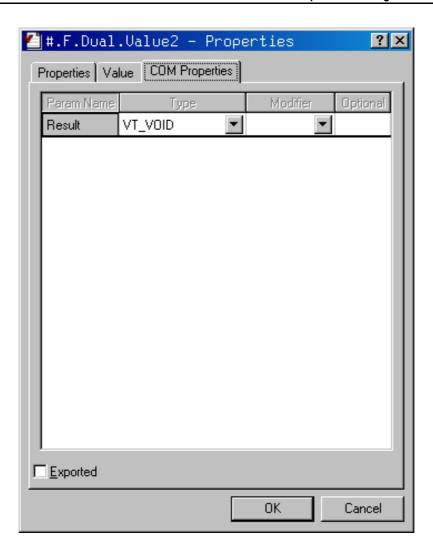
'Dyalog Dual Control' WRITE HTML 'dual.htm'

- 4. Close Dyalog APL
- 5. Start your Web Browser and point it at the file you have just saved by typing the URL:

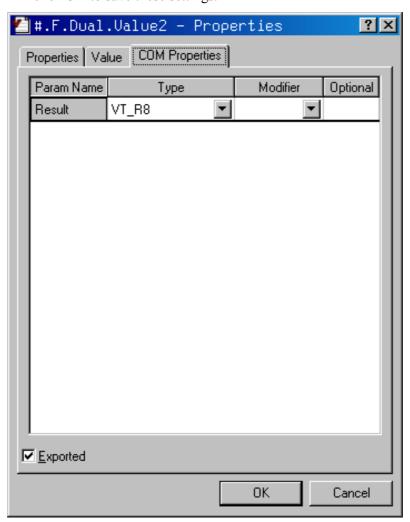
file://c:\...dyalog...\dual.htm

6. Close your browser

Calling Dual from VBScript


In the last part of this tutorial, you will learn how you can manipulate the Dual control from VBScript in a web page.

For this example, we first need to export the Value2 property. This property is only required to be *read* (not set) by the VBScript program. Therefore there is no need for it to be accessed via Get and Put functions and it can be exported (more simply) as a variable;.


1. Start Dyalog APL and load the DUAL workspace again.

)LOAD DUAL

- 2. Using the Workspace Explorer, display the Object Properties dialog box for the variable Value2.
- 3. Select the COM Properties tab. As you have not yet defined any OLE attributes, the default display is as follows:

4. Check the *Exported* option button, and change the data type to VT_R8. This is important because unlike Value1, which is an integer, Value2 may be floating-point and it must be declared as such. The resulting dialog box should appear as below; click *OK* to save these settings.

5. The VBScript program is going to need to know whenever the derived value, Value2, changes, Therefore, the next step is to define the code to generate a ChangeValue2 event and export it. ChangeValue2 is to be generated whenever Value2 has changed, so the place to put it is immediately after Value2 is recalculated in CalcValue2.

Edit F. Dual. CalcValue2 so that it reads as follows:

```
∇ CalcValue2;SINK

[1] Value2←Intercept+Gradient×Value1

[2] :If ~(c'Create')∈□SI

[3] SINK←4 □NQ'' 'ChangeValue2'Value2

[4] :EndIf
```

Note that the function deliberately avoids generating the ChangeValue2 event when the instance is created. It can tell when this happens because during creation it will have been called by the Create function. (We could have instead have called CalcValue2 with an argument, but this will suffice.) This is necessary only because the simple VBScript example is unable to handle events during object creation

You can export the CalcValue2 event using the COM Events tab on the Properties dialog box for F.Dual. However, you can also export the event using the SetEventInfo method.

Type the following:

(You may wish to confirm that the event is registered correctly using the dialog box)

7. Save the workspace:

```
)CS #
)SAVE
```

8. Finally, you need to rebuild the OCX file to reflect these changes, so select File/Export and rebuild your OCX file.

- 9. The HTML page containing the example VBScript program is supplied in the file samples\activex\dualvb.htm. However, the Dual object to which the HTML refers (via its ClassID) is not the same object as *your* Dual object which has its own unique ClassID. Before We must update the file, changing the existing ClassID to the ClassID of your own Dual object. You can do this using the UPDATE_CLASSID.
- 10. Look at the function F.Dual.UPDATE_CLASSID. This function simply updates an HTML file with the ClassID of the current (ActiveXControl) namespace.

```
▼ {NEW}UPDATE CLASSID FILE; NID; HTML; CLASSID; I
[1]
       A Updates HTML file, replacing all object
[2]
        A references with the ClassID of the current
[3]
        A (ActiveXControl) namespace.
[4]
        A Optional left argument is the name of the
[5]
        A new HTML file. If omitted, it updates the
[6]
        A file in-situ.
[7]
[8]
        NID←FILE □NTIE 0
[9]
        HTML←□NREAD NID,82,(□NSIZE NID),0
[10]
        :If 2=□NC'NEW
[11]
            ■NUNTIE NID
[12]
            :Trap 22
[13]
                 NID←NEW □NCREATE 0
14]
            :Else
[15]
                 NID←NEW □NTIE 0
16]
            :EndTrap
17]
        :EndIf
[18]
        I←'clsid:'∈{
[19]
            \square AV[(\square AV \iota \omega) - 48 \times \omega \in \square A]
[20]
        }HTML
[21]
        I←I/ιρI
       :If ×ρΙ
[22]
[23]
            I+←5
[24]
            CLASSID←1↓~1↓ WG'ClassID'
            HTML[,I∘.+ipCLASSID] ← ((pI) × pCLASSID) pCLASSID
[25]
[26]
            HTML | NREPLACE NID 0
[27]
        :EndIf
[28]
       ■NUNTIE NID
```

11. Now run the function, making a new dualvb.htm file in your current directory.

```
)CS #.F.Dual
'dualvb.htm' UPDATE_CLASSID 'samples\activex\dualvb.htm'
```

- 12. Close Dyalog APL.
- 13. Start your Web Browser and point it at the file you have just saved by typing the URL:
- 14. file://c:\...dyalog...\dualvb.htm

15. The Web page displays two instances of your Dual control, one called <code>plank_length</code> labelled <code>Length</code> (Metres to Centimetres) and the other named <code>plank_width</code> and labelled <code>Width</code> (Inches to Centimetres). The initialisation of these controls is performed by the <code>window_onload()</code> which is run when the page is loaded into the Web Browser.

```
Sub window_onload()
plank_length.Caption1 = "Metres"
plank_length.Caption2 = "Centimetres"
plank_length.Gradient = 100
plank_length.Intercept = 0
plank_width.Caption1 = "Inches"
plank_width.Caption2 = "Centimetres"
plank_width.Gradient = 2.54
plank_width.Intercept = 0
end sub
```

16. Whenever you change one of these dimensions, the corresponding Dual control generates a ChangeValue2 event after the derived value (Value2) in centimetres is recalculated. Each of the Dual controls has a VBScript callback function attached which calculates the new area. These are as follows:

```
Sub plank_length_ChangeValue2(Value2)
Result.Plank_Area.value = Value2 * plank_width.Value2
end sub

Sub plank_width_ChangeValue2(Value2)
Result.Plank_Area.value=Value2 * plank_length.Value2
end sub
```

17. When you have finished exercising the two Dual controls, close your Web Browser.

CHAPTER 14

Shared Variables (DDE)

Introduction to DDE

Dynamic Data Exchange (DDE) is a protocol supported by Microsoft Windows that enables two applications to communicate with one another and to exchange data.

DDE has largely been superseded by COM, but continues to be supported by Dyalog APL for backwards compatibility. For new applications, use COM.

Two applications exchange information by having a **conversation**. In any conversation, there is a **client**, which is the application that initiates the conversation, and a **server**; the application that is responding to the client. An application may partake in several conversations at the same time, and may play the server role in some and the client role in others. Indeed, it is perfectly reasonable for two applications to have two conversations in which each acts as the server in one and the client in another.

Most conversations are effectively *one-way* in that data flows from the server to the client. However, conversations are potentially bi-directional and it is possible for the client to send data to the server. This is often described as *poking* data.

To initiate a DDE conversation, the client application must specify the name of the server and the subject of the conversation, called the **topic**. The combination of application and topic uniquely identifies the conversation. In most applications that support DDE, the topic is the "document name". For example, Microsoft Excel recognises the name of a spreadsheet file (.XLS or .XLC) as a topic.

During a conversation, the client and server exchange information concerning one or more **items**. An item identifies a particular piece of data. For example, Microsoft Excel recognises cell references (such as R1C1) as data **items** in a conversation. Throughout a conversation, the client may specify how it wishes to be updated when the data in the server changes. There are three alternatives. Firstly, the client can explicitly request the value of an item as and when it needs it. This is described as a **cold link**. Alternatively, a client may ask the server to supply it with the value of a particular item whenever its value changes. This is called a **hot link**.

Finally, it may ask the server to **notify** it whenever the value of an item changes, to which the client may respond by asking for the new value or not. This is termed a **warm link**.

In addition to providing a means for exchanging **data**, DDE provides a mechanism for one application to instruct another application to **execute** a command. This is implemented by sending a DDE_EXECUTE message. It is important to understand that the effect of the command is local to the application in which it is executed, and that the recipient of the message does **not** return a result to the originating application. It does **not** work like the APL execute function.

Shared Variable Principles

Shared Variables are part of the APL standard, although strictly speaking as an optional facility. They provide a comprehensive mechanism for communicating between two APL workspaces, or between APL and a co-operating non-APL application. Despite some conflicts between Shared Variable concepts and DDE, this standard APL mechanism has overriding advantages as the basis for a DDE interface. The main benefit is that Shared Variables provide a **general** basis for developing communications using a variety of protocols, of which DDE is but a single example. Dyalog APL communications are not therefore designed for and limited to DDE, but can be extended to other protocols which are appropriate in different environments.

Most mainframe APL users will already be familiar with Shared Variables and will need no introduction to their concepts. New APL users, or those whose experience has been only of PC-based interpreters, may find the following introduction helpful.

Introduction

It is easiest to consider Shared Variables between two APL workspaces. A Shared Variable is simply a variable that is common to and visible in two workspaces. Once a variable is shared, its value is the same in both workspaces. Communication is achieved by one workspace assigning a new value to the variable and then the other workspace referencing it. Although there is no explicit **send** or **receive**, it is perhaps easier to think of things in this way. When you assign a value to a shared variable, you are in effect transmitting it to your partner. When you reference a shared variable, you are in fact receiving it from your partner.

This discussion of shared variables will refer to the terms **set** and **use**. The term **set** means to assign a (new) value to a variable, i.e. its name appears to the left of an assignment arrow. The term **use** means to refer to the value of a variable, i.e. its name appears to the right of an assignment arrow.

Sharing a Variable

Variables are shared using the system function $\square SVO$. This is a dyadic function whose right argument specifies the name (or a matrix of names) of the variable, and whose left argument identifies the partner with whom the variable is to be shared. In mainframe APL, you identify the partner by its processor id. For example, the following statement means that you offer to share the variable X with processor 123.

```
123 ∏SVO 'X'
```

A single SVO by one workspace is not however sufficient to make a connection. It is necessary that **both** partners make an offer to share the variable. Thus if you are process 345, your partner must complete the coupling by making an equivalent shared variable offer, e.g.

The coupling process is symmetrical and there is no specific order in which offers must be made. However, there is a concept known as the *degree of coupling* which is returned as the result of $\square SVO$. The degree of coupling is simply a count of the number of processes which currently have the variable "on offer". When the first process offers to share the variable, its $\square SVO$ will return 1. When the second follows suit, its $\square SVO$ returns 2. The first process can tell when coupling is complete by calling $\square SVO$ monadically at a later point, as illustrated below.

In this example, both partners specified exactly whom they wished to share with. These are termed **specific offers**. It is also possible to make a **general offer**, which means that you offer to share a particular variable with **anyone**. Coupling can be established by any other processor that offers to share the same variable with you, but notice that the other processor must make a **specific offer** to couple with your general one. The rule is in fact, that sharing may be established by matching a specific offer with another specific offer, or by matching a specific offer with a general offer. Two general offers cannot establish a connection.

The State Vector

One of the interesting things about Shared Variables, is that both APL workspaces are equal partners. Either of them is allowed to change the value of a shared variable, thus communication is two way. In any communication of this sort, it is essential to have a mechanism to keep things in step. If not, it is possible for one partner to miss something or to receive the same message twice. In some applications this doesn't matter. For example, if one APL workspace is simply monitoring the current value of a particular currency, it does not matter that a second workspace doesn't see all of the fluctuations as they occur. It is important only that the latest value can be referenced when it is needed. Contrast this with a trading application in which the trading workspace registers each transaction with a second workspace which monitors and stores the transactions on a database. Clearly in this case it is essential that each and every transaction is properly communicated and recorded.

Synchronisation is provided by two system functions, $\square SVS$ and $\square SVC$. $\square SVS$ reports the current value of a shared variable's **State Vector**. This provides information concerning the state of the variable from each partner's point of view. The second function, $\square SVC$, allows you and your partner to specify interlocking that enforces the level of synchronisation required by your application.

Each shared variable has a **state vector** which indicates which partner has set a value of which the other is still ignorant, and which partner is aware of the current value. The current state of a shared variable is reported by the monadic system function **SVS**. Its argument is the name of the shared variable. Its result is a 4-element Boolean vector which specifies the current state vector, i.e.

state ← □SVS name

The state vector will have one of the following values:

0 0 0 0	The variable is not shared
0 0 1 1	Both partners know the current value
1 0 1 0	You have set the value, but your partner has yet to use (read) it.
0 1 0 1	Your partner has set the variable but you have not yet used (read) it.

It may not be immediately apparent as to how the information provided by \(\subseteq SVS \) can be used. The answer, as we will see later, is that communications generates **events**. That is to say, when your partner sets a shared variable to a new value or references a value that you have set, an event is generated telling you that something has happened. \(\subseteq SVS \) is then used to determine what has happened (set or use) and, if you have several variables shared, which one of the variables has in some way changed state. A shared variable state change is thus the trigger that forces some kind of action out of the other process.

Access Control

□SVS is not sufficient on its own to synchronise data transfer. For example, what if the two partners both set the shared variable to a different value at **exactly** the same point in time? This is the role of □SVC which actually assures data integrity (if required) by imposing access controls. Its purpose is to synchronise the order in which two applications **set** and **use** the value of a shared variable.

In simple terms, **SVC** allows an application to inhibit its partner from setting a new value before it has read the current one, and/or to inhibit its partner from using a variable again before it has been reset.

□SVC is a dyadic system function. Its right argument specifies the name of the shared variable; its left argument the access control vector, i.e.

The access control vector is a 4-element boolean vector whose elements specify access control as follows:

[1]	1 means that you cannot set the variable until your partner has used it.
[2]	1 means that your partner cannot set the variable until you have used it.
[3]	1 means that you cannot use the variable until your partner has set it.
[4]	1 means that your partner cannot use the variable until you have set it.

In principle, each of the two partners maintains its own copy of the access control vector using **SVC**. Control is actually imposed by the **effective access control vector** which is the result of "ORing" the two individual ones. From your own point of view, the effective access control vector is:

```
(your \[ \text{SVC} \) \( \text{(your partner's \[ \text{SVC} \text{)} [3 4 1 2 ]}
```

Whenever either of the partners attempts an operation (set or use) on a shared variable, the system consults its effective access control vector. If the vector indicates that the operation is currently permitted, it goes ahead. If however the vector indicates that the operation is currently inhibited, the operation is delayed until the situation changes.

For example, suppose that the effective access control vector is (1 0 0 1). This prevents either partner from setting the shared variable twice in a row, without an intervening use by the other. The purpose of this is to prevent loss of data. Suppose now that one workspace assigns the value 10 to the shared variable (which is called DATA), i.e.

Then, before the partner has referenced the new value it attempts to execute the statement:

APL will **not** execute the statement. Instead it will wait (indefinitely if required) until the partner has received the first value (10). Only then will the second assignment be executed and processing continued. Effectively one workspace stops and waits for the other to catch up.

Similarly, suppose that the effective access control vector is (0 0 1 1). This means that neither partner can **use** the variable twice in succession without an intervening **set** by the other. This type of control is appropriate where each **set** corresponds to an individual transaction, and you want to prevent transactions from inadvertently being duplicated.

Suppose now that one workspace references the shared variable (which is called DATA), i.e.

TRANSACTION - DATA

Then, soon after, it executes the statement again, but without an intervening **set** by its partner, i.e.

TRANSACTION ← DATA

This time, the reference to DATA is inhibited, and the workspace waits (indefinitely if necessary) until the partner has assigned a new value. Only then will the second reference be executed and processing continued. Again, one workspace stops and waits for the other.

The purpose of **SVC** is to synchronise data transfer. It is particularly useful where timing considerations would otherwise cause data loss. However, an incorrect application which makes inappropriate use of **SVC** may hang.

A second type of problem can occur during the development of an application that uses shared variables. If the program is interrupted by an error, an attempt to display the value of a shared variable counts as a "use" and, if inhibited, will hang. In applications that use interlocking, it is recommended that a shared variable is explicitly "used" by making an assignment to a temporary variable which can then be referenced freely.

This is the theory; we will now see how DDE, by its very nature, imposes certain limitations in practice.

APL and DDE in Practice

The interface between Dyalog APL/W and DDE is provided by Shared Variables which are implemented as closely as possible in accordance with the APL Standard. There are however some conflicts between Shared Variables and the way in which DDE works. These impose certain restrictions.

The APL Shared Variable concept is based upon the *peer-to-peer* communications model where each partner has equal rights and equal control. DDE however is based upon the *client-server* model whereby data (normally) flows from server to the client at the client's request. This in turn has two major implications. Firstly, a client must **initiate** a DDE conversation. A server may only respond to a request from a client for a connection; it may not itself start a conversation. Secondly a server cannot specify to which client it wishes to communicate. In terms of the APL standard, this means that if a shared variable is to act as a server it must be made the subject of a *general offer*. A shared variable that is to act as a client must be the subject of a *specific offer* Furthermore, as in any DDE conversation there must be one server and one client, it means that two APL workspaces can share variables only if one makes a general offer and one makes a specific offer.

Note that, as mentioned in the introduction, DDE does not preclude two-way data transfer, despite its insistence on a client-server relationship. Thus the establishment of a shared variable as a server or as a client does not force the data transfer to be one-way. The choice of whether APL is to act as a server or as client may in practice be determined by convenience.

APL as the Client

To initiate a DDE conversation with a server, you use **SVO** as follows:

```
'DDE:appln|topic' □SVO 'var item'
```

where:

2

appln is the name of the server application.

topic is the server topic (usually the name of a document).

var is the name of the APL variable.

item is the name of the item with which the variable is to be associated

(shared).

For example, the following statement would associate the variable SALES with the block of cells R1C1 to R10C10 in an Excel spreadsheet called "Budget".

```
'DDE:EXCEL|BUDGET' □SVO 'SALES R1C1:R10C10'
```

Note that the result of **SVO** is the *degree of coupling*. This has the value 2 if the connection is complete (the server has responded) and 1 if it has not. In practice it is a little more complicated than this, because the result actually depends upon the type of DDE link that has been established.

In principle, the type of link is determined by the client. However, because the server may refuse to accept a particular type of link, it can actually be a result of *negotiation* between the two applications.

When the shared variable is offered as a client, APL **always** requests a warm link from the server. If the server refuses a warm link, APL instead requests the current value of the data item (a cold link), and, if the server responds, APL stores the value in the variable. In either cases, the degree of coupling is set to 2 if the connection was successful.

Executing Commands in the Server

As mentioned in the Introduction, it is possible for a client to instruct a server to execute a command by sending it a DDE_EXECUTE message. This is intended to allow the client to condition the environment in which the server is operating and not (as one might first expect) to execute a command which directly returns a result. In fact the only response from a server to a DDE_EXECUTE message is a positive or negative acknowledgement, the meaning of which is application dependent.

You can establish a shared variable as a channel for sending DDE_EXECUTE messages by assigning it a surrogate name of '&', the APL execute symbol. After sharing, you send commands to the server as DDE_EXECUTE messages by assigning them, as character vectors, to the shared variable. Following each such assignment, the value of the shared variable is reset to 1 if the server responded with a positive acknowledgement, or 0 if it responded with a negative acknowledgement. This should be interpreted with reference to the server application documentation. Note that most applications require that commands are surrounded by square brackets but several commands may be sent at a time. The following examples use Microsoft Excel Version 2.0 as the server:

Establish a link to Excel's SYSTEM topic:

APL as the Server

A DDE conversation is initiated by a client, and not by a server. If you wish to act as a server, it is therefore necessary to register this fact with the APL interpreter so that it will subsequently respond to a client on your behalf. This is done by making a *general offer* using **SVO** as follows:

```
'DDE:' □SVO 'var item'
```

where:

var is the name of the APL variable.

is the name of the item with which the variable is to be associated (shared).

Notice that in this case, the left argument to **SVO** specifies only the protocol, 'DDE'. APL automatically defines the application name and topic to be 'DYALOG' and **WSID** respectively. The DDE *item* is specified in the right argument as either the name of the variable, or, optionally, as its external name or surrogate.

To allow another application to act as a client, you must have previously published the name(s) of the items which are supported. For example, if your APL application provides SALES information, the following statement could be used to establish it as a server for this item:

```
'DDE:' □SVO 'X1 SALES'
```

In the case of a single general offer, the result of \square SVO will always be 1. When subsequently a client application attempts to initiate a conversation with a server with the application name 'DYALOG' and topic \square WSID, the APL interpreter will respond and complete the connection.

At this point, if and when the client has requested a hot or warm link to the item SALES, the degree of coupling (which is reported by using $\square SVO$ monadically) becomes 2, i.e.

```
□svo 'x1'
```

2

State and Access Control

Earlier, we have seen how shared variable state and access controls are used to ensure effective communication between two APL tasks. How do these concepts apply in the DDE environment when APL is using shared variables to communicate via DDE with both other APL workspaces, and with non-APL applications?

The initial state of a shared variable on the completion of sharing depends upon whether your variable is a server or a client. If it is a server, the initial state vector is (1 0 1 0) which means that you have set (and know) the value, but your partner has yet to use it. If the variable is acting as a client, the initial state vector is (0 1 0 1). This implies that your partner has set the value but you have yet to use it.

As your partner can be a non-APL application which does not share the concepts of **set** and **use**, it is necessary to define a rule or set of rules from which APL can reasonably infer such actions.

During a DDE conversation, the physical transfer of data from one application to another is achieved using DDE DATA messages. When a DATA message is sent, the receiving task normally returns an ACK (acknowledgement) message. APL uses the DATA and ACK messages to control Shared Variable access.

When an assignment is made to a shared variable, APL sends a DATA message to the second process. When it receives back an ACK message, APL infers that this means that the partner has **used** the variable. When APL receives a DATA message from the other process it infers that the partner has **set** the variable. However, it only responds with an ACK message when the new value of the variable is referenced by the workspace.

Let's see what this means if two APL workspaces are involved.

Server Workspace	Client Workspace
Make general offer	
X ← 42	
'DDE:' □SVO 'X' 1	
∏S V S 'X' O O O A No partner	
O O O O A No access control	
	Make specific offer
	'DDE:DYALOG SERVER' ☐SVO 'X'
ack>	< initiate
ack>	< please advise on change
ack>	2 A Offer accepted
□s v s 'x'	∏svs 'x'
1 0 1 OA I know, he doesn't	0 1 0 1A He knows, I don't
	Client requests data
	Y ← X
data (42)>	< req
	< ack
□SVS 'X' 0 0 1 1A We both know	□SVS 'X' 0 0 1 1A We both know
Server changes data	
X ← 20	
data has changed>	< ack
□SVS 'X' 1 0 1 0A I know, he doesn't	□SVS 'X' O 1 O 1A He knows, I don't
	Client requests data
	Y ← X
data (20)>	< req
data (20)	< ack
□SVS 'X' 0 0 1 1A We both know	□SVS 'X' 0 0 1 1A We both know

As you can see, this has the desired effect, namely that an APL workspace sets the value of a shared variable by assignment to it and **uses** it by reference to it. The mechanism of using the DATA and ACK messages to imply **set** and **use** also works with non-APL applications which do not (in general) support these concepts.

Access control between two APL workspaces is imposed by each workspace acting independently. Whenever either workspace changes its \(\subseteq SVC \), the information is transmitted to the other. Thus both workspaces maintain their own copy of the **effective** access control vector upons which to base decisions.

Server Workspace	Client Workspace		
No access control	No access control		
□svc 'x'	□svc 'x'		
0 0 0 0 A No access control	0 0 0 0 A No access control		
	Client makes multiple requests for data		
	Y←X		
	Y←X		
Server can set several times			
X ← 30			
X ← 40			
Set access control			
1 0 0 1 SVC 'X'			
change in □SVC>			
□svc 'x'	□svc 'x'		
1 0 0 1A I cannot set until he has used; he cannot use until I have set	0 1 1 0A He cannot set until I have used; I cannot use until he has set		
	Client requests data		
	Y ← X		
	< req		
	(hangs waiting for data)		
Server changes data			
X ← 30			
data (30)>			
	< ack		
	YA data received		
	30		

Server Workspace	Client Workspace
Server changes data	
X ← 40	
data has changed>	
	< ack
Server tries to change data again	
X ← 50	
data has changed>	
(assignment hangs waiting for ack)	
	Y ← XA use data
1. (4.0)	< req
data (40)>	< req < ack
XA assignment done	YA data received
50	40

Where the second process is a non-APL application, the effective access control vector is maintained only by the APL task and access control can only be imposed by APL. At first sight, it may seem impossible for APL to affect another application in this way, and indeed there are severe limitations in what APL can achieve. Nevertheless, effective access control is possible in the case when it is desirable to inhibit the partner from **setting** the value twice without an intervening **use** by the APL task.

This is simply achieved by withholding the ACK message. Thus if APL receives a DATA message from its partner at a time when a **set** by the partner is inhibited, APL registers the new value but withholds the acknowledgement. Only when the inhibitor is removed will APL respond with an ACK. (Users with DDESPY will observe that this is actually implemented by APL re-transmitting the DATA message to itself when the inhibitor is removed).

Assuming that the second application waits for the acknowledgement before proceeding, this will cause the desired synchronisation. Naturally, this cannot be entirely guaranteed because APL has no **direct** control over a non-APL program. Indeed, when an application transmits a DATA message, it can include a flag to indicate that an acknowledgement is neither expected nor required. In these circumstances, APL is powerless to impose any access control.

Note that APL does not (and cannot) have any control over successive internal references to the data by a non-APL application.

The rule for establishing your partner's initial **SVC** is as follows:

- If the DDE link is a warm link, your partner's \square SVC is initially $(0\ 0\ 0\ 0)$.
- If the DDE link is instead a **hot** link, your partner's **SVC** is initially (1 0 0 1).

This works in practice as follows:

Server = APL, Client = APL

You made a general offer which has been accepted by another APL workspace, e.g.

```
'DDE:' □SVO 'DATA'
```

Two APL tasks always use a warm DDE link. Therefore, initially, both **SVC**s are (0 0 0 0). Control is (optionally) imposed by both partners subsequently setting **SVC**.

Server = APL, Client = another application

You made a general offer which has been accepted by another application, e.g.

```
'DDE: ' TSVO 'DATA'
```

The client application establishes the strength of the link (warm or hot). If it is a warm link, the initial value of the client's $\square SVC$ is $(0\ 0\ 0\ 0)$ and, as the client has no means to change it itself, control may only be imposed by the server APL task. If the client establishes a hot link, its initial $\square SVC$ is $(1\ 0\ 0\ 1)$. As it has no means to change it, and as the APL server task cannot (by definition) change it, the client's $\square SVC$ retains this setting for the duration of the conversation. $(1\ 0\ 0\ 1)$ means that both partners are inhibited from setting the value of the shared variable twice in a row without an intervening use (or set) by the other. Given that the other application has requested a hot link (give me the value every time it changes) it is reasonable to assume that the application does not want to miss any values and will happily accept new data every time it is changed.

Server = another application, Client = APL

You made a **specific offer** to another application, e.g.

In this case, APL as the client will request a warm DDE link. If the server fails to agree to this request, APL will ask for the current data value and, whether or not the server responds, will not establish a permanent link. Thus the only possibility for a permanent connection is a warm link. This in turn means that the server's $\square SVC$ will be $(0\ 0\ 0\ 0)$. Furthermore, as the server has no means to change it, it's $\square SVC$ will remain $(0\ 0\ 0\ 0)$ for the duration of the conversation. Control is therefore imposed solely by APL.

Terminating a Conversation

A DDE conversation is terminated by "un-sharing" the variable. This can be done explicitly using DEX or DSVR. It is also done automatically when you exit a function in which a shared variable is localised.

Example: Communication Between APLs

The following instructions will allow you to explore how the DDE interface can be used to communicate between two Dyalog APL/W workspaces.

- 1. Start two separate APL sessions and arrange their windows one above the other so that they do not overlap.
- 2. Select the top window and type:

1

```
)WSID SERVER
A÷?5 5p100 ♦ A
'DDE:' □SVO 'A EXTNAME'
```

The result of \square SVO is 1, indicating that no client has yet joined in the conversation.

3. Select the lower window and type:

```
)WSID CLIENT
'DDE:DYALOG|SERVER' □SVO 'B EXTNAME'
B
```

The result of **SVO** is 2 indicating that the connection with the SERVER workspace has been successfully made. Now type **B**. It will have the same value as **A** in the upper window.

4. Select the top window (SERVER) again and type:

Note that the result of **SVS** indicates that the SERVER has set A, but the CLIENT has not yet referenced the value.

5. Select the lower window (CLIENT) and type:

Note how, after referencing the shared variable, its state has changed.

6. Still in the CLIENT workspace, write the following function called FOO:

```
V FOO

[1] A This function gets called on event 50 (DDE)

[2] →(0 0 1 1≡□SVS'B')/0 A Exit if no change

[3] B

▼
```

Then, to attach FOO as a callback and to "wait"...

7. Now switch to the upper window (SERVER) and type:

Type this expression repeatedly, or experiment with others. Note how changing A generates a DDE event (event number 50) on the system object '.' in CLIENT, which in turn fires the callback.

10. To interrupt DQ in the CLIENT, type Ctrl+Break or select "Interrupt" from the *Action* menu in the Session Window.

Example: Excel as the Server

The following instructions will allow you to explore the DDE interface with another application (in this case Microsoft Excel) acting as the server.

- 1. Start Excel and enter some data into (say) the cells R1C1 to R4C3 of the spreadsheet "SHEET1". The data can be character strings and/or numbers. Note that if the spreadsheet is NOT called "SHEET1", the function RUN below should be changed accordingly.
- 2. Start Dyalog APL/W (clear ws).
- 3. Size your windows so that both the Excel window and the APL Session window can be viewed comfortably at the same time.
- 4. Type the following statement in the APL Session :

```
'DDE:EXCEL|SHEET1' □SVO 'X R1C1:R4C3'
```

2

The result should be 2. If not, please check that you have typed the expression correctly, and that the name of the topic (SHEET1) corresponds to the spreadsheet name displayed by Excel.

Note that the character between "EXCEL" and "SHEET1" may be the ASCII *pipe* symbol or the APL stile. Also note that in some countries, you use Lnn instead of Rnn to refer to rows in Excel. You may therefore need to use the following expression instead:

```
'DDE:EXCEL|SHEET1' □SVO 'X L1C1:L4C3'
```

2

- 5. Remaining in the APL Session, type X. It is a matrix containing as many cells as you have requested in the SVO statement. If you entered any character strings, X will be nested.
- 6. Switch to your Excel window and change the data in one or more of the cells.
- 7. Switch back to the APL Session and look at X again. It will contain the new data.

8. Look at the state of the shared variable X using $\square SVS$. It indicates that both partners are aware of the current value of X.

9. Now switch to Excel and change the data again. Repeat step 8. Note the result indicates that Excel has changed X, but you have not yet referenced it.

10. Type the expressions :

11. Now switch to Excel and change the data again. Note that the DQ terminates and returns a result.

. 50

12. Switch back to APL and create the following function:

Then type:

- 13. Now switch back to Excel and change the data. Note that every time you change a cell, the DDE event fires your callback function FOO. In fact the function is fired twice because it itself alters the STATE of X by *referencing* it. This causes a second DDE event.
- 14. Switch back to APL, and type Ctrl+Break or select "Interrupt" from the *Action* menu to interrupt DQ.

Example: Excel as the Client

The following instructions will allow you to explore the DDE interface with APL acting as the server to another application; in this case Microsoft Excel.

1. Start APL (clear ws) and type the expressions :

1

The workspace MUST have a name as this is broadcast as the DDE **topic**. Note that it is currently essential that X contains a value before you make the offer. The result of **SVO** is 1, indicating that no client has yet joined in the conversation.

- 2. Start Excel (empty spreadsheet).
- 3 Size your windows so that both the Excel window and the APL Session window can be viewed comfortably at the same time. Do NOT iconify either one.
- 4. Select the Excel window and type the following formula into the first cell:

=dyalog|myws!sales

the value of X (12) will now appear in the cell.

5. Switch to the APL Session and type:

Notice that now that Excel has made the connection, the degree of coupling is 2.

6. Now type:

You will immediately see the new value appear in your spreadsheet.

7. Create the following function in your workspace:

Then type the expressions:

- 8. The link between Excel and APL is a *warm* link (the type of link is determined by the client, so other applications may behave differently). This means that APL will send the new value of X (SALES) to Excel every time it changes. If you have DDESPY.EXE, you can verify what is happening.
- 9. To interrupt \(\Boxed{DQ}\), type Ctrl+Break or select "Interrupt" from the *Action* menu in the Session Window.

Example: APL as Compute Server for Excel

The following instructions illustrate how APL can act as a "compute server" for Microsoft Excel, using two shared variables. One variable is used to read the data from Excel; the other is used to pass back the result.

- 1. Start Excel and enter some NUMBERS into the cells R1C1 to R3C3 of the spreadsheet "SHEET1".
- 2. Start Dyalog APL/W and size your windows so that both the Excel window and the APL Session window can be viewed comfortably at the same time.
- 3.) LOAD the EXCEL workspace. This contains the following functions :

```
∇ RUN; Z; □WSID

        Z←'DDE:EXCEL|SHEET1'□SVO 'DATA R1C1:R3C3'
[1]
[2]
        \rightarrow (2=Z)/L1
[3]
        'No Excel out there ?' ♦ →0
[4]
       L1:
[5]
        CALC
[6]
[7]
        UWSID←'EXCEL'
        Z←'DDE:'□SVO 'RESULT ANSWER'
[8]
[9]
[10]
[11]
[12]
         'Now type "=dyalog|excel!answer" into'
        cell A4 in your spreadsheet
       L2:□DL 1
        \rightarrow(\overline{2}≠\squareSVO 'RESULT')/L2 AWait for Excel to connect
        'Connected ...
'.'□WS 'EVENT'
                          50 'CALLB'
[14]
       □DQ
      ▽ CALLB MSG
[1]
[2]
       A Callback to recalculate when Excel changes DATA
        →(0 0 1 1≡ SVS 'DATA')/0
[3]
        CALC

∇ CALC; □TRAP

        TTRAP←O 'C' '→ERR'
[1]
[2]
        RESULT←+/,DATA
[3]
[4]
        →0
       ERR:RESULT←⊂□EM □EN
```

4. Type the following statement in the APL Session :

RUN

- Now type "=dyalog|excel!answer" into cell A4 in your spreadsheet
- 5. Follow the above instructions to establish a link from APL to cell A4 in your Excel spreadsheet. The result of the computation will be displayed.
- 6. Try changing some of the numbers in the spreadsheet and watch as APL recalculates the sum.
- 7. Try entering a character string in cell A1. Note that APL sends back a character string containing DOMAIN ERROR.
- 8. Use Ctrl+Break or select "Interrupt" from the *Action* menu in the Session window to stop DQ.

Example: Using an Excel Command Macro

1. Start Excel, and open the sample worksheet called "EXCEL\APLCOMP.XLS" .

Quarter 1	Quarter 2	Quarter 3	Quarter 4
123	345	234	245
213	324	345	345
123	453	678	567

and the sample macro "WDYALOG\EXCEL\APLCOMP.XLM":

	A	В
1		APL_Total
2	total_channel	=INITIATE("dyalog", "excel")
3	total_type	=1
4		=POKE(total_channel,'CTL',total_type)
5		=TERMINATE(total_channel)
6		=RETURN()
7		
8		APL_Mean
9	mean_channel	=INITIATE("dyalog","excel")
10	mean_type	=2
11		=POKE(mean_channel,'CTL',mean_type)
12		=TERMINATE(mean_channel)
13		=RETURN()
14		
15		APL_Quit
16	quit_channel	=INITIATE("dyalog","excel")
17		=3
18		=POKE(total_channel,'CTL',total_type)
19		=TERMINATE(total_channel)
20		=RETURN()
21		

These macros may be run from the main Macro Menu, or by using these short-cut keys from within the spreadsheet:

Ctrl+a Total

Ctrl+b Mean

Ctrl+c Quit

2. Invoke APL and load the sample workspace EXCEL. This contains the following functions:

```
∇ LX;CTL;SVO

[1]
      A Compute server for Excel
[2]
[3]
      A Ensure workspace name is EXACTLY correct
       WSID←'EXCEL
[4]
[5]
      A Set control variable
       CTL←0
      A Make a general offer to anyone SVO←'DDE:'□SVO'CTL'
[6]
[7]
[8]
      A On a DDE event, call function COMPUTE
[9]
         .' WS'EVENT' 50 'COMPUTE'
[10]
      A Enter the DQ
[11]
       □DQ'.'

▼ COMPUTE; SVO; TYPE; DATA; RESULT

[1]
     A Perform required calculation when user
Γ2<sub>1</sub>
     A POKES a new value for CTL from Excel
[3]
     A CTL is a matrix; ravel and assign to TYPE, so
       that a DDE message isn't generated
[4]
      →0×10=TYPE←,CTL ♦ →L3×13=TYPE
[5]
     A Setup shared variables
[6]
      SVO+'DDE: EXCEL | APLCOMP.XLS' □SVO'DATA R2C1:R4C4'
      SVO+'DDE: EXCEL | APLCOMP.XLS' | SVO'RESULT R1C5: R4C5'
[7]
[8]
     A Which calculation?
[9]
      →(L1,L2)[TYPE]
[10] A Total
[11] L1:RESULT←(4 1)ρ(⊂'Total'),+/DATA ◊ →L4
[12] A Mean
[13] L2:RESULT←(4 1)ρ(c'Mean'),(+/DATA)÷>ρDATA ◊ →L4
[14] A Stop the engine
[15] L3: OFF
[16] A Reset control variable
[17] L4:CTL←0
```

3. In the APL window, trace LX until you are in the DQ. Switch to the spreadsheet window, and from the main menu, select Macro, Run, APL_Total, Step, then Evaluate each step.

Check that the channel is open, and that the POKE is successful. If the POKE is successful, you will see the trace window for COMPUTE pop-up. Complete the macro steps, then switch to the COMPUTE trace window. Trace through each line, and you should see the calculated totals appear in Excel.

Continue tracing (COMPUTE will be called again in response to the change in the control variable CTL) until you are again in the \(\propto DQ. \)

- 4. Try invoking the APL_Mean macro now by typing the short-cut key **Ctrl+b** in the spreadsheet window. Again, use the Tracer to see what's going on in APL.
 - NOTE: Control is not passed to APL until you take your fingers off both keys after invoking a macro with a short-cut key.
- 5. When you are comfortable with the workings of the system, interrupt the DQ by typing Ctrl+Break or by selecting "Interrupt" from the *Action* menu in the Session Window.

Execute LX (don't trace this time) and try invoking each macro by typing Ctrl+a (for Total) and Ctrl+b (for Mean) in the spreadsheet window. Use Ctrl+c to quit the application and APL.

6. Invoke APL again, and save the workspace EXCEL with a Latent Expression of LX i.e.:

```
)LOAD EXCEL
□LX←'LX'
)SAVE
```

then exit from APL.

In Excel, type Ctrl+a to calculate the Total. Excel tells you that Dyalog APL is NOT running, and asks if you want to start it. Reply YES. APL will start and load the EXCEL workspace. Since this now starts automatically, no Session Window will appear, although the functions are running. APL calculates the totals and sends them to Excel. Try successively typing Ctrl+a and Ctrl+b to calculate the totals and means.

We now have a hidden compute server for Excel. Type Ctrl+c to exit the application and APL.

Restrictions & Limitations

Although shared variables have been implemented as closely to the APL standard as is possible, certain restrictions are imposed by the nature of DDE itself.

- The server cannot make an offer to a specific client. Instead, it must broadcast a "general" offer, which could be accepted by any client. Indeed neither the client nor the server can specifically identify the other task.
- 2. Dyalog APL supports Excel "Fast Table Format" for communications with Excel (and with any other application that supports this format). This imposes the following restrictions:

The maximum number of numbers that you can send to Excel is 8191. Any attempt to send more will result in a LENGTH ERROR. This is because APL currently tries to send all the data in a single block. Larger amounts of data can be received from Excel, because Excel will send several blocks if required. The restriction may be lifted in due course.

The maximum length of a character vector (which represents a string within a cell) is 255.

- 3. A client APL program can only use indexed assignment to change the value of a shared variable if it already knows the up-to-date value of the variable, i.e. if its **SVS** is 0 0 1 1 or 1 0 1 0. An attempt to use indexed assignment on a variable whose **SVS** is 0 1 0 1 will cause a NONCE error.
- 4. Consider Excel as a server and APL as client with several warm links to an Excel spreadsheet e.g.:

If R1C1 is changed in Excel, APL expects to be told only of that change. Instead, Excel tells APL that ALL the linked cells have changed.

If APL pokes a value back to R1C1, Excel again tells APL that ALL the linked cells have changed.

You must take care to avoid this problem when dealing with DDE between Excel and APL.

CHAPTER 15

ODBC Interface

Introduction

The ODBC interface is provided by *SQAPL for ODBC* which is included with Dyalog APL/W and distributed under licence from Insight Systems ApS. *SQAPL for ODBC* is an interface between APL and database drivers which conform to the Microsoft ODBC specification. ODBC drivers exist for a wide variety of databases, from simple drivers which give limited access to "flat" DOS files, through more sophisticated local database managers such as Access, dBase and Paradox, to multi-user DBMS systems such as Oracle, Ingres, Sybase or DB2 running on remote hosts.

Note: This document describes SQAPL Version 4.0 which has been superceded by Version 6.0. The information in this Chapter will prove a useful introduction to SQAPL, but users should refer to the SQAPL 5.0 Release Notes and the SQAPL 6.0 Release Notes which can be accessed via Documentation Centre from the Help menu. A separate ODBC User Guidewill be available in due course.

The Checkout Utility

The workspace SQATEST contains a function SQATEST which can be used to test the functionality of SQAPL in connection with an ODBC driver.) LOAD SQAPL and) COPY SQATEST. Then run SQATEST with a driver name (the name of a section found in your ODBC.INI) as the right argument. If required, you can supply a password and a user id as additional elements of the argument.

To use SQATEST, you must have authority to execute a CREATE TABLE command using the driver being tested. You must not have a table called SQATST, or it will be destroyed by the test! The test will call SQATypeInfo to determine which data types the driver supports. For each data type, it will create a table called SQATST (dropping it first if it already exists) containing a column of that type and insert 30 rows of test data into it. The 30 rows will be extracted from the database and compared with the original test data, to verify that there was no truncation or loss of precision. If the test fails using the default SQAPL data type, a new test will be performed using explicit conversion to the ODBC type declared by the driver (see the section on Bind Variable Data Types for a discussion of data type conversions). The report generated will show that explicit conversion is required to use the data type with SQAPL. Finally, an UPDATE statement is used to verify whether the driver properly supports commit and roll back functionality (the function SQATransact).

If you suspect that a driver is behaving unreliably, you can give SQATEST a left argument which is the number of times you want to repeat the test. SQATEST will summarize the distinct test results encountered.

The following is an example of output resulting from a checkout of one of the ODBC drivers provided with a Beta release of the Microsoft ODBC SDK version 2.0. The checkout utility calls the function SQATypeInfo to extract the list of data types supported by the driver, and then determines how each data type can be used with SQAPL.

)load sqapl C:\WDYALOG\WS\SQAPL saved ...

)copy sqatest
C:\WDYALOG\WS\SQATEST saved ...

SQATEST 'txt_sdk20'
15:11:03 SQAPL Version: SQAPL/EL 2.0.2 for Dyalog APL/W
15:11:03 Testing service 'txt_sdk20'

Test of service txt_sdk20:

Test	Result	Elapsed	Note
====	=====	======	====
Data Type LONGCHAR(300) as C300(L)	OK	3.51	
Data Type CHAR(30) as C30	OK	2.97	1
Data Type INTEGER as I	OK	2.86	
Data Type FLOAT as F	OK	2.96	
Data Type DATE as C10(D)	OK	2.91	
CREATE TABLE (5 data types)	OK	4.01	1
Rollback on UPDATE statement	FAILED		2
Commit on UPDATE statement	FAILED		2

Note 1:

Problem : CHAR output contained trailing blanks

Note 2:

Failed : SQAPrepare 'UPDATE SQATST SET

CSQATST=:X<C10:'

SQAPL Source: ODBC Return Code: 37000 0

Message : Update statement not supported.
ODBC Source : [Microsoft][ODBC Single-Tier Driver]

The preceding report provided the following important information about the driver:

- 1. The "VARCHAR" data type has a non-standard name it is called "LONGCHAR". Many of the "flat file" drivers available from Microsoft and Q+E use non-standard data type names. For example, the VARCHAR data type is called TEXT in the Excel driver, LONGCHAR in the "txt" driver, and MEMO in the dBase driver.
- 2. The fact that the LONGCHAR data type was declared as C300(L) rather than simply C300 tells us that the driver could not accept ordinary CHAR data as input for this data type. The checkout utility always tries to use the "closest" SQAPL data type first, then uses the explicit conversion to declare an exact ODBC data type if this is required.
- 3. *Note 1* informs us that SELECT statements on CHAR data returned data with trailing blanks (blanks which were NOT present in the input data).
- 4. *Note 2* says that the transaction tests both failed because the driver does not support UPDATE (fortunately, it DOES support INSERT, or none of the tests would have worked).

ODBC Compatibility

The capabilities provided by *SQAPL/EL* correspond more or less to *Core API* ODBC specification. This means that you can:

- Connect to data sources. Use multiple statements on a connection.
- Prepare and execute SQL statements. Execute SQL statements immediately.
- Assign storage for parameters in an SQL statement and result columns.
- Retrieve data from a result set. Retrieve information about a result set.
- Commit or roll back transactions.
- Retrieve error information.

SQAPL also supports some ODBC Level 1 API functionality, in particular:

- The *SQLTypeInfo* API call, which asks a driver to describe the data types it supports.
- The *SQLTables* and *SQLColumns* calls, which give access to the SQL "Data Dictionary" or Catalogue.

Most ODBC drivers have full Core API conformance and also support the Level 1 calls mentioned above. However, the ability to commit or roll back transactions is often missing from drivers which access essentially non-SQL data sources such as dBase or CSV files.

The ODBC standard also defines SQL Grammar Conformance Levels, which are orthogonal to the API Conformance Levels. Some simple drivers lack all but the most basic SQL grammar, and support a very limited set of data types. Drivers for PC file systems like dBase or Btrieve often depart from the standard when it comes to data type names - the same data type may go under the name VARCHAR, LONGCHAR, MEMO, TEXT or NOTE depending on the driver being used. Very few drivers map exactly to a particular API or SQL conformance level and there are almost as many real conformance levels as there are drivers. This can make it tricky to write portable code.

If you use *SQAPL* functionality which is not supported by a driver, the result will typically be a "Driver not capable" or "SQL syntax error" message from the driver. *SQAPL* contains a checkout utility which can be used to get a quick overview of the data types and operations supported by a particular driver. See the *Installation* section for details regarding the checkout utility.

Using SQAPL

Initialisation

Before you can use SQAPL, you must call the function SQAInit. This function loads the appropriate SQAPL dynamic link library.

```
SQAInit''
O
```

Note that the first element of the result of SQAInit, like any SQAPL function, is a return code. If the operation was completely successful the return code is zero, and in the event of a non-fatal error (warning), the return code is minus one

Connecting to a Service

To establish a conversation with a driver, you must first create a connection object. The function SQAConnect takes a right argument which must contain an object name and a service name, and optionally a password and a user id if the data source requires them. The object name is used to identify the connection in subsequent calls to SQAPL.

The following example creates a *connection object* named c1 that is connected to the service Ingres using the password secret and the user id mkrom. The service name, in this case Ingres, is the name of an ODBC driver defined in the Windows file ODBC.INI.

```
SQAConnect 'C1' 'Ingres' 'secret' 'mkrom'
O
```

The result of 0 indicates that the connection was successful. You can create several connection objects, and access more than one data source at the same time. For example:

```
SQAConnect 'C1' 'PROD DB2' 'secret' 'bhc'

SQAConnect 'C2' 'Paradox'

O
```

Some drivers also allow you to make more than one connection to the same source.

The ODBC Driver Manager, and most ODBC Drivers, are capable of prompting the user through the process of selecting a source and logging on. Version 3.0 allows APL applications to tap in to this functionality by using the WindowHandle option to SQAConnect, supplying a valid Window Handle to an existing form. If you provide a Window Handle, SQAPL assumes that you want to use BrowseConnect and makes the appropriate ODBC call.

The function SQABrowseConnect is a small APL *cover function* that creates a window and calls SQAConnect with a suitable argument.

The Return Code

In the event that a function should fail completely, the first element of the result will be a positive number identifying the source of the error message. The second element will be one or more return codes, and the third element will contain a textual error message. See *Errors and Warnings* for further instructions on interpreting error return codes.

If an SQAPL function receives a warning message, the result will have the normal form, but the first element will be minus one (-1). You can retrieve the warning message using the function SQAGetWarning. There is an example of a call to SQAGetWarning at the very end of the section on bind variables.

SQAPL Objects

SQAPL is not strictly object-oriented, but the architecture is built around four classes of *objects*. The function SQAInit creates a *root* object, which is named '.' or '#' (you can use either name). SQAConnect creates *connection* objects as children of the root. Later, we will see how the function SQAPrepare creates *cursor* objects as children of a connection. A cursor object contains an SQL statement and status information for a query. Cursors may have children of type *buffer*, but this version of SQAPL does not allow you to manipulate buffers directly; they contain input and result data for the cursor.

Each segment of the name of an SQAPL object must must begin with a letter of the English alphabet. The rest of the segment name must be alphanumeric. The names *are* case sensitive.

Disconnecting from a Service

The function SQAClose can be used to close any SQAPL object. When applied to a connection object, all children of the connection (its cursors) are closed, and you are disconnected from the driver. All files, network conversations and host logons associated with the connection are also closed.

```
SQAClose 'C1'

SQAClose '.'

O
```

If you close the root object using an argument of '.' or '#', you will disconnect all existing services, and unload the database drivers.

SQADSN

SQADSN returns the list of ODBC Data Source Names defined on the machine in use:

```
SQADSN '.'

Odbase Files Microsoft dBase Driver (*.dbf)
Excel Files Microsoft Excel Driver (*.xls)
FoxPro Files Microsoft FoxPro Driver (*.dbf)
Text Files Microsoft Text Driver (*.txt; *.csv)
North Wind Microsoft Access Driver (*.mdb)
```

SQAGetInfo

The function SQAGetInfo makes it possible to ask a driver to provide information regarding the capabilities of the data source, and optional settings.

The argument to SQAGetInfo is a connection name followed by a vector of integer information codes.

The global variable <code>Define_SQLGetInfo</code> contains a list of codes, lifted from the ODBC header file sqlext.h. The first column is a list of names, the second column the numeric codes, and the third column the ODBC version which introduced the item of information.

To query all the available information, you can use the following expression:

```
Define_SQLGetInfo, ₹ 2>SQAGetInfo 'C'
                              (Define_SQLGetInfo[;2])
SQL_ACTIVE_CONNECTIONS
                                             0 0
                                                   64
SQL_ACTIVE_STATEMENTS
                                             1 0
                                                   0
SQL_DATA_SOURCE_NAME
                                             2 0
                                                   costs
SQL_DRIVER_HDBC
                                             3 0
                                                   33949848
SQL_DRIVER_HENV
                                               0
                                                   33949820
SQL_DRIVER_HSTMT
                                             5
                                               0
SQL_DRIVER_NAME
SQL_DRIVER_VER
SQL_FETCH_DIRECTION
                                             6
                                               0
                                                   ODBCJT32.DLL
                                             7
                                               0
                                                   03.50.3428.00
                                             8 0
                                                   191
SQL_ODBC_API_CONFORMANCE
SQL_ODBC_VER
SQL_ROW_UPDATES
SQL_ODBC_SAG_CLI_CONFORMANCE
                                             9
                                               0
                                                   02.50.0000
                                            10 0
                                            11 0
                                                   Ν
                                           12 0
                                                   0
..etc..
```

SQADo

The simplest way to make calls to a service is to use the function SQADo. For example:

The SQADo function creates a cursor object under the connection named in the first element of the right argument. The name of the cursor object is returned as the second element of the result. The result of the SQL expression (if any) is returned as the third element. The form of the third element will always be a one-element vector containing the result matrix

By default (no left argument, or a left argument of 1), SQADo will loop until all data has been fetched. If you need to deal with arbitrarily large amounts of data, you may need to *block* the output. The block size is determined by the *MaxRows* parameter for the connection in the SQAPL.INI file (see the *Installation* section for details). If you need to set different values for the block size at run-time, you must use the low-level functions described later in this chapter.

To fetch one block at a time, give SQADo a left argument of 0 (as in the above example). Fetch subsequent blocks by calling SQADo again with no left argument, and a right argument containing the name of the cursor:

```
SQADo 'C1.S1'

0 C1.S1 Downing, Susan Programmer 29 ...
Fielding, Wallace Project Leader 47 ...
Applegate, Donald Analyst 51 ...
Fine, Laurence Sr Programmer 42 ...
```

When there is no more data, the third element of the result of SQADo will be a oneelement vector containing an matrix with zero rows. *Important:* The database cursor remains open until you have fetched all the records in the result set. If you are connected to a multi-user server, there may be important resources allocated to or locked by the cursor, which will not be released until you have fetched all the data. Be particularly careful when experimenting with *SQAPL* in immediate execution, as you may lock other users out of a database.

Not all databases are equally temperamental about this - some will allow you to have SELECT cursors open without locking others out completely, but as a general rule you should close cursors as soon as you no longer need them. If you decide that you do not want to fetch the rest of the data, call SQAClose to close the cursor:

SQAClose 'C1.S1'

0

Bind Variables

Almost all drivers allow you to use variables in SQL expressions. Because the process of supplying values for the variables at execution time is known as *binding*, these variables are known as *bind variables* in SQL terminology. Bind variables are useful if you need to use the same statement several times with different parameters. They also allow you to avoid formatting data so that it can be included in the SQL expression itself. For example, to reliably include character values in an SQL expression rather than as bind variables, you would have to double any quotes contained in the data to avoid changing the syntax of the expression. Numbers would have to be formatted, a process which is expensive and may cause a loss of precision.

Bind Variable Syntax

SQAPL uses a syntax for bind variables which is different from that used by ODBC or the SQL databases themselves. Most SQL systems use the symbol ?, or alternatively a colon followed by an identifier (:name), to indicate a bind variable. For example:

```
SELECT * FROM EMP WHERE ENAME =?
```

When using SQL from traditional programming languages, all information about the bind variable is normally declared using a number of API calls immediately before the call which executes the statement, or by creating a data structure which is passed as an additional argument. Insight Systems, the authors of SQAPL, decided that it would be most convenient for the APL programmer to declare all the information in the SQL statement itself, so SQAPL uses an extended syntax for bind variables. SQAPL replaces your bind variable declarations with the correct bind variable syntax for the driver.

This is the **only** change which SQAPL makes to statements; in all other respects, your statements will be handed to the driver exactly as you supplied them to SQAPL

SQAPL bind variable declarations are surrounded by colons. When using SQADo, the values for the bind variables are passed as trailing elements in the right argument:

```
SQADo 'C1' 'select * from emp where dept = :x:
and hourly_rate > :y<I:' 'CPH' 100
```

Two bind variables named x (character, with the value 'CPH') and y (declared as an integer, with the value 100) were used in the above expression. Note that the character bind variable declaration :x: is *not* surrounded by quotes; quotes are only required when character values are supplied as constants in SQL expression itself.

In the current version of SQAPL, the names you provide for bind variables are not used - you have to supply values in the order in which the variables occur in the statement. If you use the same variable more than once, you still have to provide the value as many times as the variable appears in the statement.

Bind Variable Data Types

You do not need to declare the data types for output (select) variables, so why is it necessary to declare the types for your input (bind) variables? This is because almost all database management systems describe their own output, but almost none of them are willing to describe the types of bind variables required after parsing your statement. This probably comes as a surprise to most APL programmers with SQL experience, especially those of you familiar with the Dyalog APL interface to Oracle and with IBM's AP127 interface to DB2. Oracle and DB2 are exceptions, and do describe their bind variable data types.

The data type of a bind variable is declared by following the variable name with a less than symbol (<), a letter defining the type, and optionally numbers specifying the *precision* and *scale* of the data. If you do not define the type, SQAPL uses the default specified in SQAPL.INI (normally *C80*).

Letter	Type	Example APL Value
I	Integer	1234
F	Float	3.1415E24
С	Character	'Smith'
X	Binary	ΠΑΥ

The following table lists data types supported by SQAPL/EL version 2.0:

The *precision* is the maximum number of digits or, for a character column, the maximum length. Some data types require declaration of the *scale* of the data (the maximum number of digits following the decimal point). The *scale* declaration follows the *precision*, is separated from it by a decimal point, and is normally only used in conjunction with fixed-width ODBC data types.

You *must* declare the precision for types C and X, for example *C10*. If the underlying database type is numeric and the database driver expects you to declare both precision and scale, you do this using (for example) *F9.2* or *C9.2* for a column with precision 9 and scale 2, for APL data in numeric or character form, respectively.

Specifying the Exact ODBC Type

The ODBC standard defines 19 distinct data types. *SQAPL/EL* only has four, and you may find that you are not able to select an SQAPL data type which is immediately accepted by your driver. Most drivers are able to perform some conversions. A good driver will let you bind an INTEGER value for LOGICAL, TINYINT, SMALLINT, INTEGER, BIGINT, FLOAT, REAL and DOUBLE columns. Some drivers will not even let you bind a CHAR for a VARCHAR (despite the fact that the internal forms are identical - only the ODBC type number is different)!

The *ODBC Driver Manager* actually contains all the code required to do all possible data type conversions, but the application has to specify which conversions it wants. For output, SQAPL gets data type declarations from the driver, selects the closest SQAPL type, and requests the necessary conversions. Since most drivers do not declare their bind variable data type requirements, there is no way SQAPL can help. If the driver will not accept one of the SQAPL data types, you have to declare how to convert the data.

The most common problems encountered with SQAPL are ODBC drivers which will not accept INTEGER data for BIT (or LOGICAL) bind values, or CHAR data for VARCHAR and LONG VARCHAR bind values.

You specify the exact ODBC data type by following the SQAPL data type declaration with the ODBC type letter in parenthesis. For example, to solve the problem with input of BIT data types, you could use type I(B).

The default ODBC types used when binding are:

SQAPL/EL Type	ODBC Type	Number	Letter
C	CHAR	1	С
I	INTEGER	4	I
F	FLOAT	6	F
X	BINARY	-2	X

The SQAPL types used for *select* variables are:

ODBC Type	Number	Letter	SQAPL/EL Type
BIT	-7	В	I
TINYINT	-6	K	I
BIGINT	-5	G	I
LONG VAR BINARY	-4	Z	X
VAR BINARY	-3	Y	X
BINARY	-2	X	X
LONGVARCHAR	-1	L	С
CHAR	1	С	С
NUMERIC	2	N	F
DECIMAL	3	M	F
INTEGER	4	I	I
SMALLINT	5	Н	I
FLOAT	6	F	F
REAL	7	R	F
DOUBLE	8	О	F
DATE	9	D	C10
TIME	10	T	C8
TIMESTAMP	11	S	C19-C26
VARCHAR	12	V	С

Determining which Data Types are Supported

The function SQATypeInfo returns a table which lists the data types supported by a particular driver - if the driver supports the *SQLTypeInfo* ODBC API function (this is an ODBC Level 1 API call). See the *Function Reference* section for more details. The checkout utility described in the *Installation* section calls SQATypeInfo and then attempts to create a table using each data type. It will also determine whether you need to specify any ODBC data types explicitly for a particular driver.

Dates and Timestamps

With SQAPL/EL, you must provide values for ODBC data types *Date*, *Time* or *Timestamp* as character vectors. ODBC specifies the following character representations for these data types:

Type	Format	Length
DATE	yyyy-mm-dd	10
TIME	hh:mm:ss	8
TIMESTAMP	yyyy-mm-dd hh:mm:ss[.fff[fff]]	19-26

For example, this means that you must provide input for a column of type DATE in the form 'yyyy-mm-dd', and that you will receive output in the same format. If a driver will not accept a straight C type declaration, add the ODBC type letter. For example, C10(D), C8(T) or C19(S).

Conversion Errors

If you do not select the right bind variable type, the result will either be an error or a warning. For example:

The column is a LONG VARCHAR (you have to determine that using other means), and the driver cannot accept a CHAR bind variable. The solution is to declare it as :C<C10(L):.

You can also use explicit type declaration to force conversion between character and numeric data. Because SQADo more or less ignores warnings, the following example uses the "low level" functions described in the next section in order to capture the resulting warning messages:

```
SQAPrepare 'C.I' 'insert into tbl values(:I<C8(I):)'

SQAExec 'C.I' '123.45'

1 1

SQAGetWarning 'C.I'

4 01004 0 [Q+E Software][ODBC Btrieve driver]

Data truncated.
```

In this case, the :I <C8(I): declares that you intend to provide C8 data, but want it translated to ODBC type INTEGER. In the example, this resulted in a warning (return code -1 from SQAExec) because the number had a fractional part which was truncated.

Low Level Interface

The SQADo function performs all the steps required to *prepare* and *execute* a statement, and *fetch* the results. It is very convenient for ad-hoc queries or prototyping, but gives you little control over the use of database cursors. SQADo only returns the result of the last call to SQAFetch, and any warnings resulting from earlier calls are ignored. If the last fetch did return a warning, the cursor has often been closed, so you cannot retrieve the warnings.

If you are writing an application which performs updates, needs to detect warnings, or control over the use of database cursors, you should use the following *Low Level* functions:

SQAPrepare	Creates a new curs	sor object, and	prepares an SQ	L statement for

execution

SQADescribe Describes the input and output for a statement

SQAExec Binds values (if any) to statement and executes it

SQAFetch Fetches one or more blocks of data

SQAClose Closes a cursor object

SQATransact Commits or rolls back the current transaction

SQACance 1 Discards the current cursor context without destroying the cursor

SQAPrepare

The right argument of SQAPrepare must contain a cursor object name followed by a statement. The first segment of the cursor name must be the name of an existing connection. The right argument may contain additional elements in order to set options such as the maximum block size for each subsequent call to SQAFetch. For example:

The previous example prepares a statement named **S1** using connection **C1** and reserves buffer space for five records per fetch. The return code 0 indicates that the statement was successfully prepared.

The Bulk option supports multiple execution using matrices of bind variables. It specifies the largest number of rows or sets of bind variables you intend to provide, so that SQAPL knows how much buffer space to set aside.

For example:

```
SQAPrepare 'X.i1' 'insert into table test values (:x<C9:,:y<I:)' ('Bulk' 5)

SQAX 'X.i1' ('one' 'two' 'three',[1.5]:3)

3 3
```

SQADescribe

The function SQADescribe allows you to retrieve a description of any SQAPL object. For example:

```
2-SQADescribe 'c1.s1'
Cursor c1.s1, State=Prepared, MaxRows=5
select * from emp where title=:x: and hourly_rate>:y<F:</pre>
Bind Vars (2):
Name
             APL DB Prec. Scale Length Int Buf
                 C
F
             С
                        80
                                0
                                       81 C
                                               C
F
х
                         8
                                0
Select Vars (4):
             APL DB Prec. Scale Length Int Buf
             С
                                       21 C
name
                  С
                        20
                                0
                                               С
title
             С
                  C
                                       16 C
                        15
                                0
                                               F
                  F
                                0
                                        8 F
hourly_rate
             F
                         8
                        20
                                0
                                       21
manager
```

When used without a left argument, or with a left argument of 1, SQADescribe provides a formatted report for the SQAPL object named in its right argument. The most common use is to describe a cursor, as in the example above. The first two columns of output give you the *Name* and the *APL* type of each variable. The *DB* type column gives the ODBC type. *Precision* is the number of significant digits in a numeric field, or the length of a character field. *Scale* is the number of digits to the right of the decimal point, where applicable. The *Length* column shows the number of bytes consumed for this column in each row of output. The *Int* and *Buf* columns give internal *logical* and C *buffer* types.

With a left argument of 0, the second element of the result of SQADescribe is an APL array containing unformatted information for the named object and all of its children all the way down the object hierarchy. Each item is a two-element vector, where the first element contains information about the object itself, and the second element is a vector containing the result of SQADescribe applied to each child (without return codes). For details, see SQADescribe in the Function Reference section.

SQAExec

The next step is to execute the statement using SQAExec. The argument is the cursor object name, followed by bind variables values (if any):

```
SQAExec 'C1.S1' 'Programmer' 30
```

The second element of the result of SQAExec is the number of rows modified by the execution of the statement. Since we prepared a SELECT statement, the result should be zero.

To provide proper NULL values for bind variables, simply follow the bind variable values by an equal number of boolean elements, where 1's indicate nulls:

```
SQAPrepare 'C1.U1' 'insert into emp(name,manager)
values(:n:,:m:)'

SQAExec 'C1.U1' 'Mouse, Mickey' '' 0 1

SQAExec 'C1.U1' 'Duck, Donald' 'Duck, Dolly' 0 0

1
```

A few comments about *nulls*: In an SQL database, a *null* indicates that there is no valid data for a particular value. A *null* is obviously different from the value zero - but it may come as a surprise that it is also different from an empty vector. In fact, in an SQL search, a *null* will not match any other value - including *null* itself. You must search for them using special SQL expressions "IS NULL" and "NOT NULL".

Unfortunately, although the SQL standard is quite explicit about the treatment of nulls, few databases follow the standard exactly. Some databases *do* allow you to find nulls by binding a null value to a search parameter, but this is incorrect according to the standard. How many groups should you get if a column being GROUPed BY contains multiple null values? Database managers do not agree on this either. Some take the pragmatic approach and return one group for all the null values, while databases with a theoretical bent will decide that they are all different and return one group per null value. Can you JOIN tables on nulls in your database? Writing portable applications which use nulls is tricky.

SQAX

The function SQAX performs a similar task to SQAExec but accepts a matrix with several rows of data and performs multiple execution of a statement for each set of values. If the driver supports multiple execution, SQAPL will make use of this; otherwise SQAPL will loop and make several calls on behalf of the APL user.

The second element of the result of SQAX is the sum of the records affected by each operation. The third element is a pointer to the last row of input used, unless an error occurred this should be equal to the number of records you provided.

If one or more errors occurred during execution, the first element of the return code will be -1, and the individual errors can be retrieved using SQAGetWarning:

The second element of the result of **SQAGetWarning** is a list of errors – a triplet of error codes, error messages, and row numbers in error. In this case, the Italian version of MS Access is reporting that the update of the second row failed because it would have caused a duplicate key.

SQAFetch

Finally, it is time to fetch the results:

```
SQAFetch 'C1.S1'

O Belter, Kris Programmer 33 Alcott, Scott
Beringer, Tom Programmer 41 King, Richard
Holton, Connie Programmer 37 Bridges, Debra
...
```

By default (no left argument, or a left argument of one), SQAFetch makes repeated fetch operations until all data is returned and the cursor is closed. You can supply a left argument of zero to request that SQAFetch only fetch one block of data.

SQAPL always returns data as a one-element vector containing a two-dimensional matrix with one array element per item of data. *SQAPL/PE* allows you to group the columns according to the requirements of your application.

Following the cursor name, you can provide option settings (see the *Function Reference* section for details). If you set the *Nulls* option to 1, the third element of the result of SQAFetch contains a null matrix. This is a boolean matrix with the same shape as the data in the second element, with 1's in the position which correspond to null elements in the returned data. For example:

```
SQAFetch 'C1.S2' ('Nulls' 1)
0 Mouse, Mickey 0 1
Duck, Donald Duck, Dolly 0 0
```

The value in the first row of the second column was a null - not just an empty vector!

SQACancel

The function SQACancel is used to release all resources used by a cursor *without* closing it. For example, you could use this function on a cursor to release it before you have fetched all records.

```
SQACancel 'C1.S1'
```

Unfortunately, this function does not have the same effect with all drivers. Some drivers will not allow you to re-execute a cancelled statement. SQAPL/PE will solve some of these problems, for example by re-preparing the statement if the driver returns ODBC Sequence Error on execution of a cancelled statement. The only completely portable strategy is to close the cursor, and re-prepare the statement yourself if you need it again.

SQAClose

SQAClose can be used to close cursors as well as connections:

```
SQAClose 'C1.S1'
```

With a high-quality ODBC driver, *SQAPL* allows you to maintain prepared cursors in a cache. If an identical statement is used again, the system can reduce resource consumption substantially by reusing an existing cursor.

Large Objects and Partial Binding

SQAPL itself imposes no limitations on record or data element size. The only limits result from workspace size and other memory limitations, plus limitations in the drivers or databases themselves.

However, there will be situations where it is impractical or undesirable to pass all data in a single function call. ODBC supports very large data elements in either inputs (bind variables) or results is done using a protocol known as "Partial Binding".

To support partial binding, SQAPL version 3.0 provides two functions called SQAGetData and SQAPutData, and a special modifier in bind variable declarations.

Furthermore, in order to make it possible to read and write APL objects using partial binding and fetching, there are two functions which convert APL objects to Insight's Self-Contained array (Scar) format, and back again:

SQAPutData

Assume that we have created a table as follows (this example was done using Microsoft Access):

```
SQADo 'C' 'create table persons (id counter, ename text(50),fname text(50),birth datetime,comment longtext,extra longtext)'
```

Note that the last two fields are of type LongText, which can hold up to 64k of data in each element. If we do not feel that we can safely provide all this information at once, we must use partial binding to provide the values. We must indicate this in our bind variable declarations using a trailing P for Partial:

```
SQAPrepare'C.I3' 'insert into persons (ename, fname, birth, comment, extra) values (:ename<C50:, :fname<C50:, :birth<Y:, :comment<C65536(L)P:, :extra<C65536(L)P:)'
```

The two type declarations <C65536(L)P provide SQAPL with the following information:

<	It is an input (bind) variable
С	The APL variable which we will supply is of type Character
65536	The maximum size of the data we might provide is 64k
(L)	Rather than using the default ODBC type CHAR for APL type C, we want
	SQAPL to declare to the driver that we need Long Var Char.
P	We will provide the data using Partial Bind

The declarations may seem unnecessarily complex, but all the information needs to be provided to the system.

First we must supply bind values for the non-partially bound variables using a normal call to SQAExec. For the partial variables, we provide an integer which indicates the largest piece which we intend to provide:

```
SQAExec'C.I3' 'Clinton' 'Bill' 19500616 500 500 0 -1 C.I3.comment
```

SQAExec returns a zero return code to let us know that all is well, that -1 rows have been modified (indicating that the work has not yet been done), and in the third element the name of the buffer for which data is expected.

We are now expected to:

The arguments to SQAPutData are the name of the buffer, the piece of data, and a flag which allows us to declare whether there is more data to follow. When we declare that we are done, SQAPL tells us that there is more data to supply for the buffer called C.I3.Extra.

Oops→ I had the table open using Access while testing the example. Closing Access and repeating the experiment, the final call completes successfully:

```
SQAPutData'C.I3.extra'(150p'USA ')1
```

SQAGetData

The procedure for reading data using partial binding is similar to providing input values:

```
SQAPrepare'C.S1' 'select id, ename, fname, birth, :comment>C15P:, :extra>C16OP: from persons'
```

The trailing P in the output variable declarations :comment>C15P: and :extra>C160P: declare that these variables will be fetched "partially". When partial fetching is in use, MaxRows is automatically set to 1-you cannot combine partial fetching with blocking records on output.

```
SQAExec'C.S1'
0 0
0 SQAFetch'C.S1'
0 1 Lennon John 1950-07-18 00:00:00 5
```

It is very important to use SQAFetch with a left argument of zero, so that only one block (containing one record) is fetched. It is our responsibility to pick up partial data using GetData after fetching each record, if we continue fetching SQAPL and ODBC will allow us to proceed without protests.

```
SQAGetData'C.S1.comment'

1 This is one of 11 5
SQAGetData'C.S1.comment'

0 the Beatles 0 5
SQAGetData'C.S1.extra'

He is playing the guitar 0 5
```

The first element of the result is 0 if all is well, -1 if there was a warning, and a positive number if there was an error (as for any SQAPL function). The second element contains the data, and the third element is the number of elements of data which have not yet been fetched. Once we have fetched all the partial data we want, we can proceed to the next record:

```
0 SQAFetch 'C.S1'
0 2 Star Ringo 1945-09-04 00:00:00 5
```

SCAR Conversion Functions

In order to make it possible to read and write APL objects using partial binding and fetching, there are two functions which convert APL objects to Insight's Self-Contained Array (Scar) format, and back again.

The function are SQAAPL2Scar and SQAScar2Ap1

```
z←SQAAp12Scar (≀3) 0
```

The first element of the argument is the array to be converted, the second element is 1 if the result must use printable ASCII characters only, 0 if full 8-bit representation may be used. You can only use the latter if the database column you are going to store the data in is Binary or Long Binary.

```
8↑2>z
BLDYA△IN
□avı8↓2>z
17 1 1 1 3 2 1 1 4 1 1 1 2 3 4 1
```

The first eight bytes of the Scar representation identify the encoding used. The first byte is A for ASCII Printable or B for Binary. The second byte is L for Little-Endian (Intel) byte order or B for Big-Endian. The remaining 6 bytes are the name of the translate table (entry in APLUNICD.INI) used, in order to provide translation of characters to the alphabet used by the decoding system. To convert the data back, pass the Scar vector to the function SQAScar2Apl:

```
SQAScar2Apl 2⊃z
0 1 2 3
```

Transactions

Most multi-user SQL databases support the concept of a *Unit of Recovery*. A unit of recovery starts when a connection is created. It lasts until you call the function SQATransact and decide whether the changes performed should be *committed* (made permanent) or *rolled back* (discarded). Thus, an application can make sure that a group of related changes is performed in its entirety (as a *transaction*), or not at all.

The function SQATransact takes a connection name and a flag which is 0 in order to commit or 1 to do a roll back.

```
SQAPrepare 'C1.U2' 'update emp

set hourly_rate = :newrate<F:

where name = :name:'

O

SQAExec 'C1.U2' 36 'Randall, David'

O 1

SQAExec 'C1.U2' 37 'Moore, Holly'

O 1

SQATransact 'C1' O
```

Closing a connection causes a roll back, so changes will normally be discarded if the connection is lost or terminated during a transaction. However, closing a cursor does *not* affect the changes performed using the cursor; they are still part of the current unit of recovery.

Transaction Portability Issues

Some databases do not support unit of recovery, and some which do can be configured to do *auto-commit*. This is often done in order to improve performance. Check with your database administrator to find out whether your database and driver support unit of recovery. If you are the database administrator, check the documentation!

Even worse, many (but not all) databases will close or disable all cursors under a connection when SQATransact is called. If you are using one of these, you may get "ODBC Sequence Errors" when you try to re-execute one of these cursors. If this happens, you must close the cursor and re-prepare the statement before continuing. SQAPL automates the process of re-preparing the statement.

Two-phase Commit

SQAPL does not let you include changes made through two different *connections* in a single unit of recovery. The ability to support *distributed* units of recovery is sometimes referred to as *two-phase commit* in SQL DBMS terminology. If the database manager you are using has a distributed architecture, you may in fact be using more than one physical database through one connection. If the DBMS itself supports two-phase commit, you will be able to make use of this capability with SQAPL - but this will not be apparent to you (that's the whole point).

Releasing Cursor Resources

Relational database managers use a system of locks to ensure data integrity when accessed by several users simultaneously. Unfortunately, relational database systems behave quite differently when acquiring and releasing these locks. Some acquire locks when a statement is prepared, others wait until the statement is executed. Some systems lock entire tables while others are capable of locking single rows or items of data. Some automatically release locks when you have fetched all data, others require you to explicitly cancel or close the cursor in order for locks to be released. Some databases purge all prepared statements when a commit or rollback is performed. You or the system administrator may be able to set options which change the behaviour of the DBMS.

If you want to write portable applications, you must either learn the behaviour of each class of database and code alternatives depending on the type, or write "defensive" code which always assumes the worst and explicitly closes cursors if there is any doubt as to how a database will react. Compared to reusing objects when possible, this strategy may give a significant reduction in performance, especially when using drivers such as SequeLink which provide sophisticated "cursor caching" mechanisms.

This is an area in which competition will force the DBMS systems to continue to be different. Some MiddleWare products like SequeLink attempt to reduce the differences between the supported databases in order to increase the utility of the cursor cache, but this is only possible up to a point.

Remote Procedure Calls

If you are going to use SQAPL to write applications which perform non-trivial transactions, you will probably need to make use of more sophisticated techniques than *commit* and *rollback*. Many modern SQL DBMS systems provide additional transaction processing facilities, which are unfortunately quite different from one vendor to the next. Common names for these facilities are *stored procedures* or *triggers*. These facilities make it possible to have the DBMS system execute multiple SQL statements under control of a *procedure*. The execution of such procedures can be initiated using a statement, or be *triggered* by the update of a particular table.

Not all ODBC drivers will allow you to make use of these facilities; high quality drivers like the SequeLink drivers support "SQL PassThrough" and give full access to all features of the language of each DBMS to which they provide access. Almost all databases declare the output of normal SELECT statements, but some do not describe the output of a stored procedure. *SQAPL* allows you to declare the expected output of a statement and thus extract undescribed results from a driver.

Buffers

Data for bind and select variables is stored in *buffers*. *SQAPL/EL* allocates buffers when a statement is prepared, and releases them when the cursor is closed. The size of each buffer depends on the data type and the number of records which SQAPL is asked to fetch in each call to SQAFetch.

You can limit the number of records for which SQAPL buys buffers from the operating system by setting *MaxRows* parameter in the SQAPL.INI file, or in trailing (optional) elements of the argument to SQAPrepare.

A high number should increase performance by reducing the number of times you need to execute SQAFetch, but it also increases the amount of buffer space which is required. In some environments, buffer space may be a critical resource, so you may need to be careful. A SELECT statement with a large number of output columns can easily consume several hundred kilobytes of buffer space if you buy enough for 100 records at a time! As a rule of thumb, the performance improvement is marginal once you exceed 20 to 30 records.

SQAPL supports dynamic allocation and deallocation of cursors, so buffers can be allocated and released by each fetch operation.

Dictionary Enquiries

The functions SQATables and SQAColumns can be used to query the database catalogue (not all drivers support these calls).

Both functions require a connection name as the right argument. You can reduce the amount of information returned by supplying additional optional parameters. For both functions, the first optional argument is a table name:

```
2-SQATables 'd' 'S%'
TABLE_QUALIFIER TABLE_OWNER TABLE_NAME TABLE_TYPE REMARKS
D:\SMPLDATA
                               SQATST
                                            TABLE
      2-SQAColumns 'q' 'SQATST'
 TABLE QUALIFIER TABLE OWNER TABLE NAME COLUMN NAME
 D:\ODBCDATA
                                SQATST
                                             CSQATST
 D:\ODBCDATA
                                SQATST
                                             C1
                                             C2
 D:\ODBCDATA
                                SQATST
D:\ODBCDATA
                                             C3
                                SQATST
 D:\ODBCDATA
                                SQATST
                                             C4
 D:\ODBCDATA
                                             C5
                                SQATST
 DATA_TYPE TYPE_NAME PRECISION
                                       LENGTH SCALE RADIX
         1 CHAR
                               20
                                            20
                                                    0
         <sup>-</sup>7 LOGICAL
                                1
                                             1
                                                    0
                                                          10
         <sup>-</sup>1 MEMO
                      2147483647 2147483647
                                                    0
                                                           0
          1 CHAR
                               30
                                            30
                                                    0
                                                           0
          3 FLOAT
                                7
                                             8
                                                          10
          9 DATE
                               10
                                             6
                                                           0
 NULLABLE REMARKS
         1
         1
         1
         1
         1
```

The first example requested table information for all tables with names beginning with the letter S. The second example extracted descriptions of all columns in the table SQATST. Look the functions up in the *Function Reference* for details of the remaining optional arguments.

Quick Reference

rc	+	SQACancel	cur
rc	←	SQAClose	obj
rc data	+	SQAColumns	con [tbl col qua own]
rc	+	SQAConnect	con srv [pwd usr]
rc data	←[fmt]	SQADescribe	obj
rc cur data nul	← [all]	SQADo	con sql [bind]
rc rows	+	SQAExec	cur [bind]
rc data nul	← [all]	SQAFetch	cur [opt]
rc msgs	+	SQAGetWarning	obj
rc	+	SQAInit	
rc	+	SQAPrepare	name sql [opt]
rc data	←	SQATables	con [tbl typ qua own]
rc	+	SQATransact	con state
rc	←	SQATypeInfo	con

1 if all data should be fetched (default), 0 for one block
Bind variable values (if required)
Column name (or prefix with trailing %)
Connection name
Cursor name
Output from server request
1 if result should be formatted (the default), 0 for raw data
vector of message triplets
Null matrix (boolean, 1=null), or empty vector if <i>Nulls</i> option not
specified (always empty in the case of SQADo).
Any object name (root, connection or cursor)
Options
Owner name (or prefix with trailing %)
Logon password
Qualifier (or prefix with trailing %)
Return code - See Appendix A for description of non-zero values
The number or rows modified by the operation
Service name of service (see function for details)
Transaction state: 0=COMMIT, 1=ROLLBACK
Server language statement
Table name (or prefix with trailing %)
Type (eg. TABLE or VIEW, or comma-separated list)
Logon user id

Function Reference

Naming Conventions

All SQAPL function names start with the prefix SQA. These functions are documented in this manual, and every attempt will be made to ensure "upwards compatibility" of these functions, from one release to the next.

SQAPL defines one or more other functions and variables, which are all prefixed €SQ. These functions are for internal use by SQAPL, and may change without notice.

Function Descriptions

The following pages describe each documented SQAPL application function; its syntax, arguments and results.

Unless otherwise noted, the results described in the following are the results returned by **successful** calls to the functions in question. In the event of errors, **all** functions return the same form of result, described in the *Errors and Warnings* section.

SQACance1

Purpose: Deactivate a cursor (rolls changes back if the driver is capable of this,

and releases locks).

Syntax: rc ← SQACancel cur

rc 0

cur A cursor name

Example:

SQACancel 'C1.S1'

SQAClose

Purpose: Close an SQAPL object.

Syntax: rc ← SQAClose cur|con|root

rc 0

cur | con | root Name of a cursor, a connection, or the root

object.

Example:

SQAClose 'C1.S1'

0

SQAColumns

Purpose: List names and types of columns contained by a table or view. This

function may not be supported by all drivers.

Syntax: rc data ← SQAColumns con [tbl col qua own]

rc 0

data Output matrix, with the following columns:

TABLE_QUALIFIER
TABLE_OWNER
TABLE_NAME
COLUMN_NAME
DATA_TYPE
TYPE_NAME

PRECISION LENGTH SCALE RADIX NULLABLE REMARKS

con Name of the connection.

tb1 Table name

col Column name

qua Qualifier

own Owner

The last four arguments are optional, and used to select data from the result. You can use SQL wildcards, for example values like 'T%' to find all values starting with T.

Example: see next page

SQAColumns Example:

```
2-SQAColumns 'q' 'SQATST'
TABLE_QUALIFIER TABLE_OWNER TABLE_NAME COLUMN_NAME
                                SQATST
D:\ODBCDATA
                                            CSQATST
D:\ODBCDATA
                                SQATST
                                            C1
D:\ODBCDATA
                                            C2
                                SQATST
                                            С3
D:\ODBCDATA
                                SQATST
D:\ODBCDATA
                                            C4
                                SQATST
                                SQATST
D:\ODBCDATA
                                            C5
DATA_TYPE TYPE_NAME PRECISION
                                      LENGTH SCALE RADIX
         1 CHAR
                              20
                                                   0
        <sup>-</sup>7 LOGICAL
                               1
                                                   0
                                                         10
         1 MEMO
                     2147483647 2147483647
                                                   0
                                                          0
         1 CHAR
                              30
                                           30
                                                   0
                                                          0
         3 FLOAT
                               7
                                            8
                                                   2
                                                         10
         9 DATE
                              10
                                                   0
                                            6
                                                          0
NULLABLE REMARKS
        1
        1
        1
        1
```

SQAConnect

0

```
Purpose:
                Connect to a data source.
Syntax:
                rc ← SQAConnect con srv [p1] [p2] ...
                rc
                        The name of the connection object to be created.
                con
                        A character vector containing the name of a service. See the
                srv
                        Installation section for information on defining services.
                        (optional) parameter
                р1
                        (optional parameter)
                p2
Example:
        SQAConnect 'C2' 'Paradox'
```

Optional Parameters for SQAConnect

SQAConnect accepts a number of optional parameters which may be specified after srv. Parameters may be specified in the orderr in which they are defined (see table below) or by a keyword/value pair. The optional parameters are:

Name	Description
Password	Password
UserID	User Id
MaxCursors	The maximum number of cursors which can be opened on the connection
MaxRows	The default number of rows reserved to hold blocks of data when fetching
DriverOptions	Driver specific options (passed to Driver for processing)
WindowHandle	The handle of an existing Window (form). You must specify this if you want to use BrowseConnect to guide the user through logon interactively.
BindType	The method of giving the input varaibles (default ?)
BindChar	Character used to delimit bind variable declarations (default :)
DefaultType	Default type for undeclared variables (default <c80:)< td=""></c80:)<>
Cache	Yes/No depending on whether closed statements should be stored in the cache
AplServer	Indicates that the data source is an SQAPL Server, which is capable of returning a single APL object as the result of a query
OdbcAutoCommit	Whether to set the AutoCommit option (for drivers which support it).
MaxColSize	The maximum column size to reserve space for when fetching or binding variables of unspecified width.

Examples:

If you connect to a data source using SQAConnect (or SQABrowseConnect) having specified the DriverOptions or WindowHandle parameter, SQAPL uses an ODBC call named SQLDriverConnect, rather than SQLConnect which is used in simple cases.

Following this call, the result of SQADescribe contains a complete list of driver options used to connect, including values set by the driver (as opposed to being provided from APL). For example:

```
SQABrowseConnect 'X'

0
2 1 7>0 SQADescribe 'X'
DSN=Costs;DBQ=c:\Windows\Desktop\odbcii.mdb;DriverId=25;FIL
=MS Access;MaxBufferSize=512;PageTimeout=5;UID=admin;
```

This string can be stored and provided as DriverOptions at a subsequent logon, to exactly recreate the connection.

Note that the result will contain both userid AND PASSWORD if used, so your application may want to remove these before saving the parameters in permanent storage.

SQADescribe

Purpose:

```
rc data← [fmt] SQADescribe obj
Syntax:
               rc
               data
                      If fmt is 1 or elided, a formatted report for the object. If
                      fmt is 0, unformatted data for the object and all its children
                      (see below for details).
               fmt
                      Optional flag; 0 to avoid formatting the output.
               obj
                      An object name
Example:
       2>SQADescribe 'c1.s1'
Cursor c1.s1, State=Prepared, MaxRows=5
select * from emp where title=:x: and hourly_rate>:y<F:</pre>
Bind Vars (2):
               APL DB Prec. Scale Length Int Buf
Name
              С
                                           81 C
                    С
                           80
                                    0
Х
                                                    С
               F
                    F
                            8
                                    0
                                             8 F
                                                    F
f
Select Vars (4):
               APL DB Prec. Scale Length Int Buf
Name
name
              С
                    C
                           20
                                           21 C
                                    0
                                                    C
title
               C
                    C
                           15
                                    0
                                            16 C
                                                    C
hourly_rate F
                    F
                            8
                                    0
                                             8
                                              F
                                                    F
                           20
manager
```

Describe an SQAPL object.

With a left argument of 0, the second element of the result of SQADescribe is an APL array containing unformatted information for the object named in the right argument, and all of its children all the way down the object hierarchy (as for all SQAPL functions, the first element is a zero return code indicating success).

The first element of this array contains information about the named object. The second element is a vector containing two-element vectors resulting from the application of SQADescribe to each child (discarding the return codes). The data returned for each SQAPL object class is as follows:

Root

Element	Contents
2	Class (1 for Root)
3	SQAPL Version
4	Full pathname of INI file
5	ODBC Environment Handle

Connection

Element	Contents
2	Class (2 for Connection)
3	Driver Type (2)
4	ODBC Connection Handle
5	Service (ODBC Data Source) Name
6	MaxCursors
6	Block Size (MaxRows)
7	DriverOptions for connection
8	Boolean vector of ODBC Functions Supported (see below)

The list of functions supported is of interest in two situations:

- 1. If you have problems with a driver and need technical support, and
- 2. If you wish to extend the functionality of SQAPL by making your own ODBC API calls. The result is a Boolean vector which can be decoded using the variable <code>Define_SQLGetFunctions</code>. This is a three-column variable supplied in the SQAPL workspace with version 3.0. The first column contains SQL function names, the second the function number which can be used as an index into the Boolean vector returned by describe. The third column indicates which level of ODBC the function belongs to.

Cursor

Element	Contents
2	Class (3 for Cursor)
3	State: 1=New, 2=Executed, 3=Fetching, 4=Fetch Completed, 5=Free (cached)
4	Number of Bind Variables
5	Number of Select Variables
6	SQL Statement
7	Block Size (MaxRows)
8	Statement Handle

Buffer

Element	Contents
2	Class (4 for Buffer)
3	Type (0=Select, 1=Bind)
4	APL Type:
	Entry Level Types: 1=CHAR, 2=INTEGER, 3=FLOAT, 4=BINARY Professional Edition Types: 5=COMPLEX, 6=ARRAY, 7=DATE, 8=TIME, 9=TIMESTAMP, 10=YYYYMMDD, 11=HHMMSS, 12=DAYNO
5	ODBC Type:
	1=CHAR, 2=NUMERIC, 3=DECIMAL, 4=INTEGER, 5=SMALLINT, 6=FLOAT, 7=REAL, 8=DOUBLE, 9=DATE, 10=TIME, 11=TIMESTAMP, 12=VARCHAR -1=LONG VARCHAR, -2=BINARY, -3=VAR BINARY, -4=LONG VAR BINARY, -5=BIG INTEGER, -6=TINY INTEGER, -7=BIT
	(see the ODBC Programmers Reference for details)
6	Internal (Logical) Type:
	Currently the same list as the ODBC types, but numbered from 1 and up: (1=BIT7=LONG VARCHAR), then (8=CHAR19=VARCHAR)
7	Buffer Type:
	1=BINARY (ODBC), 2=BINARY (SequeLink), 3=CHAR, 4=LONG (INTEGER), 5=DOUBLE (FLOAT), 6=DATE, 7=TIME, 8=TIMESTAMP
8	Precision: The number of significant digits, or the length of a character field.
9	Scale: The number of digits to the right of the decimal point, if any.
10	Length: The number of bytes of storage consumed by one item of data.

Note that some of the type information is not available (zero) until after the first fetch.

SQADo

Purpose: Create a cursor, prepare a statement for execution, execute it, and

fetch results.

Syntax: rc cur data nul← [all] SQADo con sql [bind]

then: rc cur data nul← SQADo cur

rc 0

cur Name of cursor which was created by the first call to

SQADo.

data Output

nul Although SQADo does not support the 'Null' option, it still returns the empty null result from SQAFetch as the fourth element of the result. Future versions of SQADo may return

nulls in this position.

all 1 or elided: fetch all data. Use 0 to fetch one block only, then make repeated calls to SQADo with the cursor name as

the right argument to fetch following blocks.

con Connection name

sql The statement to be executed (usually an SQL expression).

bind Data for bind variables, if any.

Example:

```
SQADo 'C1' 'select * from emp'
O C1.S1 Alcott, Scott Sr Programmer 50 ...
Bee, Charles Sr Programmer 43 ...
Applegate, Donald Analyst 51 ...
```

Note that the fifth element of the result contains a status flag for the cursor. Under normal circumstances, only two values should be returned:

```
5=Fetching (more records to come)
6=Fetch completed
```

SQAExec

Purpose: Execute a prepared statement.

Syntax: rc rows← SQAExec cur [bind]

rc 0

rows The number of rows modified by execution of the statement.

cur The name of a cursor.

bind Data for bind variables, if any. To input nulls, follow bind

values by equal number of boolean elements where 1's

indicate nulls.

Example:

SQAExec 'C1.S1' 'Programmer' 30

SQAFetch

Purpose: Fetch results of an executed statement.

Syntax: rc data nul+ [all] SQAFetch cur [opt]

rc 0

data One-element vector containing data matrix.

nul Empty unless Nulls parameter is 1 (see opt). If Nulls is 1, boolean data with same shape as data indicates a null was returned for the corresponding element of data.

all 0 if you only want to fetch one block of data. 1 or elided to fetch all data.

cur The name of a cursor which has been executed.

opt Options (see below)

Elements after number 1 must be two-element vectors containing (option name) (value) pairs. Valid options are:

Nulls If set to 1, the third element of the result contains null indicators. The default is 0.

Example:

```
SQAFetch 'C1.S1' ('Nulls' 1)

O Belter, Kris Programmer 0 0
Beringer, Tom 0 1
Holton, Connie Programmer 0 0
```

In the example, the data in the second row of column two was a null.

Note that the fifth element of the result contains a status flag for the cursor. Under normal circumstances, only two values should be returned:

```
5=Fetching (more records to come)
6=Fetch completed
```

This allows you to avoid the final unnecessary call to SQAFetch, returning an empty block.

SQAGetWarning

Purpose: Fetch warnings encountered during last SQAPL function call on an

object.

Syntax: rc msgs← SQAGetWarning obj

rc 0

msgs Vector of three-element vectors. Each element is in the

standard error format described in Errors and Warnings:

(origin) (code) (text)

One element is returned for each warning returned during the execution of the most recent SQAPL function call on the object

in question.

obj The name of any SQAPL object.

Example:

SQAInit

Purpose: Initialize the SQAPL Client environment.

Syntax: SQAInit

SQAInit initializes functions which form the interface to ODBC or SequeLink. In some cases, an Auxiliary Processor is started, or a

Dynamic Link Library is loaded.

You must call SQAInit before using any other SQAPL functions.

SQAPrepare

Purpose: Prepare a statement for execution.

Syntax: rc← SQAPrepare cur sql [opt]

rc 0

Name of cursor object to be created. The name

must have two segments separated by a dot, where

the first segment is the name of an existing

connection object.

The statement to be executed (usually an SQL)

expression).

opt Options (see below)

Elements after number 2 must be two-element vectors containing

(option name) (value) pairs. Valid options are:

MaxRows Maximum block size for subsequent Fetch calls.

Example:

```
SQAPrepare 'C1.S1' 'select name, sal* from emp' ('MaxRows' 10)
```

0

SQATables

Purpose: List the tables and views accessible through a particular connection.

This function may not be supported by all drivers.

Syntax: rc data← SQATables con [tbl typ qua own]

rc 0

data A matrix with the following columns:

TABLE QUALIFIER

TABLE OWNER

TABLE NAME

TABLE TYPE

REMARKS

con Connection Name

tbl Table name

typ Type: 'TABLE', 'VIEW', or other data source-specific

identifiers. Comma-separated lists also accepted

qua Qualifier

own Owner

The last four arguments are optional, and used to select data from the result. For tb1, qua and own, you can use SQL wildcards, for example values like 'T%'.

Example:

```
2>SQATables 'd' 'C%'
TABLE_QUALIFIER TABLE_OWNER TABLE_NAME TABLE_TYPE REMARKS
D:\SMPLDATA CUSTOMER TABLE
```

SQATransact

Purpose: Commit or roll back the current "unit of recovery".

Syntax: $rc \leftarrow SQATransact con 0|1$

rc 0

con A connection name

0 | 1 0=Commit, 1=Roll Back

Example:

SQATransact 'C1' 0

0

SQATypeInfo

Purpose: List the data types supported by a driver. This function may not be

supported by all drivers.

Syntax: rc data← SQATypeInfo con

rc 0

data A matrix with the following columns:

TYPE_NAME, DATA_TYPE, PRECISION, LITERAL_PREFIX, LITERAL_SUFFIX,

CREATE_PARAMS, NULLABLE, CASE_SENSITIVE, SEARCHABLE, UNSIGNED_ATTRIBUTE, MONEY,

0 FLOAT

0 DATE

AUTO INCREMENT, LOCAL TYPE NAME

con Connection Name

0

0

0

0

Example:

```
2>SQATypeInfo 'c'
TYPE_NAME DATA_TYPE PRECISION LITERAL_PREFIX LITERAL_SUFFIX
                   1
LONGCHAR
                          65500
CHAR
                   1
                            255
                   4
INTEGER
                             10
                   8
FLOAT
                             15
                   9
                             10
DATE
CREATE_PARAMS NULLABLE CASE_SENSITIVE SEARCHABLE
max length
                                                   3
                       1
length
                       1
                                       1
                                                   3
                       1
                                       0
                                                   2
                       1
                                       0
                                                   2
                                                   3
                       1
                                       0
UNSIGNED_ATTRIBUTE MONEY AUTO_INCREMENT LOCAL_TYPE_NAM
                  0
                         0
                                         O LONGCHAR
                  0
                         0
                                           CHAR
                                         0
                  0
                         0
                                         O INTEGER
```

Errors and Warnings

In the event of an error, all SQAPL functions return a three-element enclosed vector. The same format is used for warning messages retrieved by the function SQAGetWarning:

[1]	Origin	Identifies the origin of the error message.
[2]	Code	One or more return codes - numeric if you are using SequeLink, ODBC returns alphanumeric error codes.
[3]	Text	Wherever possible, SQAPL will obtain a textual error message from the originator, or try to tell you where to look for more information.

There are five possible origins of which only 3 are relevant to SQAPL for Dyalog APL/W:

1: SQAPL Client (APL Code or AP)

```
SQAPrepare 'C1.S1' 'select * from emp'
1 1007 OBJ Parent not found
```

The operation failed because SQAPL could not find the parent object (C1).

4: ODBC

```
SQAPrepare 'C1.S1' 'select * from emp'
4 S0002 O [Microsoft][ODBC dBASE Driver][dBASE]
Invalid file name;file EMP.DBF not found
```

When an error is returned by ODBC, the second element contains two elements. The first element is a character vector containing the ODBC state, and the second element is either zero or a numeric native return code from the database server.

ODBC error messages also have one of two fixed formats. For errors that do not occur in the data source, the error text will have the form:

"[vendor-identifier][ODBC-component-identifier]component-supplied-text"

For errors that do occur in the data source (such as the above example), the error text will have the form:

"[vendor-identifier] [ODBC-component-identifier] [data-source-identifier] data-source-supplied-text"

5: Interface

Some operating systems require an interface layer between APL and SQAPL. Errors in this interface layer are returned with an origin code of 5, and are documented on the following pages.

SQAPL Error Codes (origin 1)

The following errors are returned by SQAPL itself (origin code=1). The first three letters of the error test identify the internal SQAPL module in which the error occurred:

Module	Type of Error
APL	An error was detected in the shape, type, rank (etc) of an argument
DRV	Driver - only occurs in conjunction with SequeLink
INI	There is an error in the SQAPL.INI file
INT	Internal error
OBJ	There is an error in one of the SQAPL object names in the argument
SQL	SQAPL could not prepare the statement

Each error message is explained in more detail below:

10001 APL Length Error

The length of an argument is incorrect

10002 APL Rank Error

The rank of an argument is incorrect

10003 INT Function does not exist

Internal error

10004 APL Domain Error

The domain of an argument is incorrect

10005 APL Nonce Error

This error is reserved for future enhancements

10006 OBJ Please call SQAInit

After starting APL or closing the root, you must call SQAInit

10007 OBJ Parent not found

You attempted to create a new object under a parent object which does not exist

10008 OBJ Wrong Class

The operation is not allowed on that class of object

10009 OBJ Name already in use

An object by that name already exists

10010 OBJ Object not found

The named object does not exist

10011 OBJ Already initialised

You called SQAInit, but SQAPL was already initialized

10012 INT Memory allocation error

Internal error

10013 INT Unknown Class (ACT)

Internal error

10014 INT Unknown Action (ACT)

Internal error

10015 INT Function not supported (ACT)

Internal error

10016 SQL Unbalanced bind characters

The statement contains an odd number of bind characters (:)

10017 SQL Unbalanced single quotes

The statement contains an odd number of single quotes

10018 SQL Unbalanced double quotes

The statement contains an odd number of double quotes (")

10019 SQL Invalid variable definition

A bind variable name is invalid

10020 SQL Bind variable syntax error

A bind variable definition has invalid syntax

10021 SQL Invalid data type identifier

You have used an invalid data type letter

10022 SQL Invalid data type modifier

The data type modifier (following the type letter) is invalid

10023 OBJ Invalid object name

The object name is not well-formed

10024 OBJ Invalid parent

You are attempting to create an SQAPL object under a parent of the wrong type

10025 INI Invalid service definition

There is an error in the section of SQAPL.INI which describes the named service.

10026 OBJ Nonce Error

You attempted an operation which is not currently supported

10027 SQL Row too large

The space required to represent one row of output as an APL variable exceeds 32,000 bytes

10028 SQL Unbalanced Parentheses

... in a bind variable declaration

10029 DRV Unsupported network

The network type in SQAPL.INI file or the argument to SQAConnect is not supported (SequeLink only).

10030 SQL Column not found

A Group specification contains an unknown column name (SQAPL/PE only).

10031 SQL Maximum number of cursors exceeded

The driver cannot open more cursors

10032 SQL Unsupported conversion requested

An output declaration has requested a data type conversion which is not supported (SQAPL/PE and SequeLink only).

10033 PED Professional Edition Required

You attempted to use functionality which is only available in the Professional Edition.

10034 SCA Bound value too large

When converted to SCAR form, the bound value was bigger than the allocated buffer.

10035 SCA SCAR contains unsupported type

You tried to read a SCAR which contains a data type which is not known to your version of SQAPL. It was probably written by a later version of SQAPL.

10036 SCA SCAR conversion error

The data does not seem to be a valid SCAR.

10037 APL Invalid Option

You have used an option name which is not applicable to the SQAPL function called. 100037 can also occur in /EL.

Interface Error Codes (origin 5)

Interface Errors should never occur during normal use of *SQAPL/EL*. If they do occur, they indicate errors in the APL coded part of SQAPL and should be reported to your Dyalog APL supplier or to Insight Systems.

Error number **10004** may occur when the 'Group' option is used with *SQAPL/PE*. This error code is returned if the size of the result of an SQAPL call exceeds the maximum size which can be handled by the interface layer. **SQAPrepare** attempts to prevent this from happening by reducing the block size, and returning error (10027) if a single row of output will exceed the limit. If a column occurs more than once in the 'Group' definition, it is possible to create a result which is too large. If this happens, you must reduce the number of occurrences of the offending column(s).

Index

	BMP file	81
	BtnPix property	
□NEW44, 65, 67, 70	Button object	
□NL216	in a Grid	136, 140
□WX	C	
	C	
A	callback function	22 , 48
access control vector	Caption property	52, 88
ActiveX Control	CoolBand object	108
calling methods in	Cell co-ordinates	146
ActiveX controls	CellChange event	150
loading	CellError event	149
obtaining event information	CellFonts property	133, 142, 145
writing in Dyalog APL282	CellHeights property	132, 152
ActiveXControl object See Chapter 13	CellMove event	149
creating an instance	CellTypes property	142
exporting events	CellWidths property	
exporting properties	CFILES workspace	261
generating events 284	registering as an OLE server	261
overview	using from Excel	
SetEventInfo method	ChangeCol method	
AddCol method	ChangeRow method	
AddComment method	Checked property	
AddRow method	ChildEdge property	
	Classic Edition	
Align property	ClassID property	
AlignChar property	ClickComment event	
ampersand (in a caption)	client (DDE)	311
APL client (TCP/IP)	client/server operation (TCP/IP)	
	ClipCells property	
APL server (TCP/IP)	CMap property	
aynchronous processing (OLE)276	cold link (DDE)	
В	colour	
5	ColTitleAlign property	
BandBorders property105	ColTitleDepth property	
BCol property40, 133, 142	ColTitleFCol property	
bind variable	ColTitles property	
Bitmap object81	columns, list ofSee	
bitmaps	COM Events tab (Properties dial	
Dyalog APL91	COM objects	<i>C)</i>
Windows standard90	syntax rules	224
Bits property87	,	

COM Properties tab (Properties dia	log)293	DockCancel Event	169
Combo object	C ,	DockChildren Property	170, 173
in a Grid	136, 138	DockEnd Event	169
COMCTL32.DLL		Docking	See Chapter 8
commit See S	QATransact	a Form into a CoolBar	
Conga	181, 197	a ToolControl	176
conversation (DDE)		changing Type	168
CoolBand object	102	one Form in another	170
Caption property	108	sequence of events	168
ChildEdge property	107	DockMove Event	168, 179
GripperMode property	103	DockRequest Event	169
ImageIndex property		DockStart Event	
Index property		Dragable property	42
NewLine property		DragDrop event	
CoolBar object		Dyalog APL DLL 243, 25	
BandBorders property			
DblClickToggle property		E	
FixedOrder property	103	Edit object	
ImageList property		in a Grid	136 137
VariableHeight property			*
Coord property		enqueueevent message	
coordinate system		Event property	
CurCell property		event queue	
CurrentState property		EventList property	
_		COM objects	
D		events	
data types		Events	2, 10
supported by driver See So	ATypeInfo	generating using NQ	25
DblClickToggle property		Expanding event	
DCOM		Export	
DCOMREG workspace		Expose event	
DDE		Lapose event	60
DDE conversation		F	
DDE_EXECUTE message			
debugging GUI applications		FCol	
Decimal property		FCol property	
Define_SQLGetFunctions variable		FieldType property	
DelCol method		FileBox object	
DelComment method		FillCol property	
DelRow method		FixedOrder property	
dequeue		FlatSeparators property	
Divider property		fonts	
Dockable Property		Form object	
DockAccept Event		FormatString property	136
Dockscocht Event	07, 170, 177		

Index

I	MDI	See Chapter 7
	MDIArrange method	165
ICO file	WIDICascauc iliculou	165
Icon object81		162
Icon property	MDIMenu property	
ImageIndex property	MDITile method	
CoolBand object	1v1c11d 00 cct	61
ToolButton object92	MenuBar object	
ImageList object	in a ToolControl object	
MapCols property92	in MDI applications	
Masked property92	MenuItem object	
ImageList property	Metafile object	
CoolBar object	MethodList property	
ToolControl object92	methods	
InCell mode (Grid)	Microsoft Jet Database Engine	
Index property	modal dialog box	
CoolBand object109	modal object	
inhibiting an event23	multi-threading	
Input property	MouseMove event	
InputMode property	MsgBox object	
Invoking Methods	multi-threading	38
with NQ27	MultiLine property	
	multi-threading with objects	
J	mate threading with objects	
Justify property117	N	
I/	name resolution	186
K	named parameters (OLE)	226
KeyPress event 19, 24		
,	Namespace References	
L	•	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N	
Label object in a Grid		100
LOAN workspace 247		109
registering as an OLE server		
using from Dyalog APL259	N I	
using from Excel		
using from two applications	11u11 vulue5	236
using from Visual Basic	_	
LocalAddr property		
LocalPort property	object name	0
NA.	objects	
М	OCXClass object	
MapCols property92	events	
Masked property	C V C11t5	
1 1 2	OLEAddEventSink method	434

OLEDeleteEventSink method234	writing a server24	41
OLEListEventSink method	OLEAddEventSink method	
OLEQueryInterface method	OLEAUTO workspace2	31
QueueEvents Property230	OLEClient object2	
OCXSTUB.DLL 243	calling methods in22	
ODBC See Chapter 15	events2	
auto-commit	GetMethodInfo method22	
data types	GetPropertyInfo method22	21
partial binding	HelpFile property22	
quick reference	missing type information	33
releasing cursor resources	OLEAddEventSink method	
remote procedure calls	OLEDeleteEventSink method2	34
sequence error	OLEListEventSink method	34
size restrictions	OLEQueryInterface method2	37
transactions	QueueEvents Property2	
two phase commit	OLEControls property2	
type of output variable355	OLEDeleteEventSink method2	
OLE Client See Chapter 11	OLEListEventSink method2	34
null values236	OLEQueryInterface method2	37
OLEAUTO workspace231	OLERegister method	45
on-line help223	OLEServer object20	60
type information215	ClassID property24	42
writing a client214	OLERegister method24	45
OLE methods	OLEUnRegister method24	
arrays and pointers225	TypeLibFile property24	
calling with no parameters225	TypeLibID property24	
optional parameters	OLEServers property2	
output parameters226	OLESYNC workspace2	
returning objects227	OLEUnRegister method24	45
using named parameters226	OnTop property14	47
OLE properties	optional parameters	
as objects229	OLE methods22	25
using	_	
OLE Server	Р	
aynchronous processing276	partial binding (ODBC)3	60
configuring an OLE server for DCOM 273	Picture property84,	
DCOM273	Poly object	
generating events241	Posn property	
implementing an object hierarchy 260	properties	
in-process servers	changing with WS	
LOAN workspace247	retrieving by reference	
namespaces and objects240	setting with assignment	
out-of-process registry entries245	setting with WC	
out-of-process servers242, 244	Properties dialog	
rules for exported functions241	1 Toportios dialog	J-1

PropList property 15, 217	ShowComment event	160
Proxy Server (using) 198, 199	ShowDropDown property	97
_	ShowInput property	138, 139, 140
Q	ShowSession property	
QFILES workspace	Size property	54
QueueEvents Property 230	Cool Rand object	109
QueueEvents 1 toperty230	SocketNumber property	184
R	SocketType property	189
	Spinner object in a Grid	136
Range property		363
ref		344
REGSVR32.EXE 243	SQACancel	
RemoteAddr property185, 189		345, 359, 370
RemoteAddrName property 186, 203	~ \(\) 1 C C 1 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	367, 371
RemotePort property		344, 372
REXEC workspace		355, 375
roll back	SQADo	
Root object	O VI IBACC	356, 380
multi-threading38	SQAFetch	
RowSetVisibleDepth method	SQAGetData	
RowTitleAlign property 132, 135	SQAGetInfo	
RowTitleDepth property132, 135	SQAgetWarning	
RowTitleFCol property	SQAGetWarning	
RowTitles property132, 135, 151	SQAInit	
RowTreeDepth property153	SQAPL.INI	
RowTreeImages property157	SQAPrepare	
RowTreeStyle property 157	~ <	
_	SQAScar2Apl	
S	SQATables	
SCAR conversion functions	·-	
Scroll event		
Scroll mode (Grid)	· ·	·
ScrollOpposite property	001.0.1	
Select event	COLT 11	
server (DDE) 311		
Server object	StatusBar object	
	~	
ShowSession property		
SERVER workspace	Q . 1	
service names	m 1 G 1 1 1	
SetEventInfo method		
SetMethodInfo method 234		
SetPropertyInfo method		
shared variables 312	0.15	
ShowCaptions property	in a CoolBand	110
		1 I U

in a TabControl111	TCPRecv event187, 18	9, 194, 205, 211
in an MDIClient162	TCPSend method187, 18	8, 189, 204, 212
_	TCPSocket object 181, 183, 18	4, 185, 187, 189
T	RemoteAddr property	189
TabButton object111	RemotePort property	189
TabControl object	SocketType property	189
Buttons style	Style property	188
FlatButtons style	TCPAccept event	210
FlatSeparators property	TCPReady event	188
HotTrack property	TCPRecv event	211
MultiLine property	TCPSend method	212
ScrollOpposite property116	Tip property	See Chapter 5
Style property	TipField object	
TabFocus property	TipObj property	128
TabJustify property	TitleHeight property	
Tabs (default) style	TitleWidth property	
TabSize property	ToolButton object	
·	DropDown style	97
TabFocus property 119	ImageIndex property	92
TabJustify property	Radio style	96
	Separator style	
TabSize property	ShowDropDown property	97
TargetState property	Style property	
TCP/IP support	ToolControl object	
	bitmaps for	
APL arrays	containing a MenuBar	
APL client 185	Divider property	93
APL client/server	ImageList property	92
APL server	MultiLine property	
clients and servers	ShowCaptions property	
hypertext transfer protocol (HTTP) 197	Style property	
multiple clients	Transparent property	95
output buffering	topic (DDE)	311
receiving data	TrackBar object in a Grid	136
sending data	Transparent property	
stream sockets	type information (OLE)	215
UDP sockets	type library file	
writing a web client	Type property	
wrting a web server	TypeLibFile property	
TCPAccept event	TypeLibFileID property	
TCPClose event	Type Diot note property	2 12
TCPConnect event	U	
TCPGotAddr event	_	<i>,</i>
TCPGotPort event	Undo method	
TCPReady event	Undocking a SubForm	176

UndocksToRoot Property 176	window menu (MDI) 164
unit of recovery See SQATransact	Windows bitmaps
user datagram protocol (UDP)182, 189	WMF file 83
Using Classes	workspaces, sample
	CFILES
V	LOAN 247
VALUE ERROR22	OLEAUTO231
	QFILES191
Value property	REXEC191
Values property	WWW
VariableHeight property105	WWW workspace
W	X
Wait method	
warm link (DDE)	XP Look and Feel
web Client, writing	effect on docked windows
web server, writing 208	XPLookAndFeelDocker parameter 180

DYALOC

Dyalog Ltd South Barn Minchens Court Minchens Lane Bramley Hampshire RG26 5BH United Kingdom www.dyalog.com